当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling atomic-scale lithiation mechanisms in a NiO thin film electrode
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-11-05 , DOI: 10.1039/d0ta08415h
Ke Qu 1, 2, 3, 4, 5 , Zhengping Ding 5, 6, 7, 8, 9 , Mei Wu 5, 6, 7, 8, 9 , Pengfei Liu 10, 11, 12, 13, 14 , Shulin Chen 5, 6, 7, 8, 9 , Ruixue Zhu 5, 6, 7, 8, 9 , Bo Han 5, 6, 7, 8, 9 , Xiumei Ma 5, 6, 7, 8, 9 , Peng Gao 5, 6, 7, 8, 9 , Jiangyu Li 1, 2, 3, 4, 5
Affiliation  

An in-depth mechanistic understanding of the electrochemical lithiation process of nickel oxide (NiO) is both fundamentally interesting and technologically relevant for its potential applications. In this study, we utilize in situ transmission electron microscopy to unravel the intricate morphological features, charge state changes and lattice orientation relationships, leading to a comprehensive understanding on the conversion process in an epitaxially grown NiO thin film. Dynamic structural and chemical imaging, in combination with first-principles calculations, reveals the first direct visualization of the intermediate phase LixNiO, in which the interstitial sites are identified to be half occupied alternately, at the intercalation stage. A topotactic phase transition is identified, indexed as NiO (001)//Ni (111) by in situ electron diffraction. The kinetics of Li-ion transport can be affected by epitaxial strain and lattice defects inside the thin-film electrodes, in which disarranged structures at the boundary can promote ion diffusion, while compressive interfacial strain can have an opposite effect. These atomic-scale insights are of general importance in understanding conversion-type electrodes and guiding the design principle for viable conversion type electrode materials.

中文翻译:

揭示NiO薄膜电极中的原子级锂化机理

对氧化镍(NiO)的电化学锂化过程的深入机械理解,从根本上来说很有趣,并且在技术上也与其潜在应用相关。在这项研究中,我们利用原位透射电子显微镜揭示了复杂的形态特征,电荷状态变化和晶格取向关系,从而使人们对外延生长的NiO薄膜的转化过程有了全面的了解。动态结构和化学成像,结合第一性原理计算,揭示了中间相Li x的首次直接可视化在插层阶段,其中间隙位置被确定为交替占据一半的NiO。通过原位电子衍射鉴定出全能相变,其索引为NiO(001)// Ni(111)。薄膜电极内部的外延应变和晶格缺陷会影响锂离子迁移的动力学,其中界面处无序的结构会促进离子扩散,而压缩界面应变会产生相反的影响。这些原子尺度的见解对于理解转换型电极和指导可行的转换型电极材料的设计原理具有普遍意义。
更新日期:2020-11-22
down
wechat
bug