当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin and Phonon Design in Modular Arrays of Molecular Qubits
Chemistry of Materials ( IF 7.2 ) Pub Date : 2020-11-22 , DOI: 10.1021/acs.chemmater.0c03718
Chung-Jui Yu 1 , Stephen von Kugelgen 1 , Matthew D. Krzyaniak 1, 2 , Woojung Ji 1 , William R. Dichtel 1 , Michael R. Wasielewski 1, 2 , Danna E. Freedman 1
Affiliation  

The transformative applications of quantum information science (QIS) require precise design and integration of networks of qubits, the fundamental units of QIS systems. Chemical synthesis is a powerful approach, offering routes to modular, atomically precise arrangements of identical qubits. Herein, we employed the versatility of framework chemistry to investigate spin and lattice dynamics of the expanded copper(II) porphyrinic framework Zr–Cu–NU-1102 (2) possessing Cu–Cu distances of 18.0 Å. Pulse electron paramagnetic resonance spectroscopy revealed a significant reduction in relaxation processes mediated by qubit–qubit interactions compared with the more spin-dense Cu–PCN-224 (1) framework. With the reduction in the spin–spin relaxation process, phonon-mediated processes emerged as the primary driver of spin–lattice relaxation. We synthesized the isoreticular Hf–Cu–NU-1102 (3) to elucidate the impact of the nodes versus the ligands on the phonon-mediated relaxation process. Measurement of 3 revealed identical spin–lattice relaxation dynamics to 2, thereby excluding involvement of node-centered or bulk framework acoustic modes. Supported by theoretical calculations of the ligand vibrational modes, these results implicated linker-based motions as dominant contributors to phonon-mediated spin–lattice relaxation. These findings provide clear guidelines for synthetic design to control spin and phonon interactions in modular arrays of molecular qubits.

中文翻译:

分子量子位模块阵列中的自旋和声子设计

量子信息科学(QIS)的变革性应用需要精确设计和集成量子位网络,而量子位网络是QIS系统的基本单位。化学合成是一种强大的方法,它提供了通往相同量子位的模块化,原子精确排列的路线。本文中,我们利用骨架化学的多功能性研究了具有18.0ÅCu-Cu距离的扩展铜(II)卟啉骨架Zr–Cu–NU-1102(2)的自旋和晶格动力学。脉冲电子顺磁共振波谱显示,与自旋密集的Cu–PCN-224相比,由量子位-量子位相互作用介导的弛豫过程显着减少(1)框架。随着自旋-自旋弛豫过程的减少,声子介导的过程成为自旋-晶格弛豫的主要驱动力。我们所合成的isoreticular铪-Cu系NU-1102(3节点相对于所述声子介导的松弛过程中的配体),以阐明的影响。3次测量显示相同的自旋-晶格弛豫动力学为2,从而排除了以节点为中心或整体框架声学模式的参与。在配体振动模式的理论计算的支持下,这些结果暗示了基于连接子的运动是声子介导的自旋-晶格弛豫的主要贡献者。这些发现为合成设计提供了明确的指导,以控制分子量子位模块阵列中的自旋和声子相互作用。
更新日期:2020-12-08
down
wechat
bug