当前位置: X-MOL 学术Radiat. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering
Radiation Physics and Chemistry ( IF 2.9 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.radphyschem.2020.109287
Atsushi Kimura , Fumiya Yoshida , Miho Ueno , Mitsumasa Taguchi

Abstract The potential of a radiation crosslinking technique for developing gelatin scaffolds for tissue engineering was evaluated by comparing it with a chemical crosslinking method. Radiation-crosslinked gelatin exhibited higher visible light transmittance as compared to chemically crosslinked gelatin. The radiation crosslinking efficiency of the gelatin was estimated to be 91%; it was affected by hydroxyl (OH) radicals formed by γ-radiolysis of the aqueous gelatin solution under nitrous oxide or nitrogen-saturated conditions. The proportions of phenylalanine, tyrosine, and histidine in the gelatin decreased significantly with increasing absorbed dose. At the same time, the amounts of 12 other amino acids remained almost unchanged after γ-ray irradiation, and these amino acids did not participate in the crosslinking reactions. The contents of tyrosine, phenylalanine, and histidine in gelatin were the most important factors for radiation crosslinking. Cell adhesion of the radiation-crosslinked gelatin would be maintained before and after γ-ray irradiation because there was no decrease in the proportion of the cell adhesion active sequence (arginine-glycine-aspartic acid, RGD motif). The yield for dityrosine formation was estimated to be 0.030 mol l-1 Gy-1, and this is considered to be the point at which crosslinking occurred in the radiation-crosslinked gelatin. As the crosslinked gelatin and degradation products have no absorption bands in the visible region, the radiation crosslinking technique, unlike chemically crosslinking techniques, can modify the gelatin while maintaining high transparency.

中文翻译:

辐射交联技术在组织工程明胶支架研制中的应用

摘要 通过与化学交联方法进行比较,评估了辐射交联技术在开发组织工程明胶支架方面的潜力。与化学交联的明胶相比,辐射交联的明胶表现出更高的可见光透射率。明胶的辐射交联效率估计为91%;它受到一氧化二氮或氮饱和条件下明胶水溶液的γ-辐射分解形成的羟基(OH)自由基的影响。明胶中苯丙氨酸、酪氨酸和组氨酸的比例随着吸收剂量的增加而显着降低。同时,其他12种氨基酸在γ射线照射后的含量几乎没有变化,这些氨基酸没有参与交联反应。明胶中酪氨酸、苯丙氨酸和组氨酸的含量是影响辐射交联的最重要因素。由于细胞粘附活性序列(精氨酸-甘氨酸-天冬氨酸,RGD 基序)的比例没有减少,因此辐射交联明胶的细胞粘附在 γ 射线照射之前和之后都会保持。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。明胶中的组氨酸和组氨酸是辐射交联的最重要因素。由于细胞粘附活性序列(精氨酸-甘氨酸-天冬氨酸,RGD 基序)的比例没有减少,因此辐射交联明胶的细胞粘附在 γ 射线照射之前和之后都会保持。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。明胶中的组氨酸和组氨酸是辐射交联的最重要因素。由于细胞粘附活性序列(精氨酸-甘氨酸-天冬氨酸,RGD 基序)的比例没有减少,因此辐射交联明胶的细胞粘附在 γ 射线照射之前和之后都会保持。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。由于细胞粘附活性序列(精氨酸-甘氨酸-天冬氨酸,RGD 基序)的比例没有减少,因此辐射交联明胶的细胞粘附在 γ 射线照射之前和之后都会保持。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。由于细胞粘附活性序列(精氨酸-甘氨酸-天冬氨酸,RGD 基序)的比例没有减少,因此辐射交联明胶的细胞粘附在 γ 射线照射之前和之后都会保持。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。二酪氨酸形成的产率估计为 0.030 mol l-1 Gy-1,这被认为是辐射交联明胶中发生交联的点。由于交联明胶和降解产物在可见光区没有吸收带,与化学交联技术不同,辐射交联技术可以在保持高透明度的同时对明胶进行改性。
更新日期:2021-03-01
down
wechat
bug