当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Creating Electronic and Ionic Conductivity Gradients for Improving Energy Storage Performance of Ruthenium Oxide Electrodes
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jallcom.2020.158013
Jian-De Xie , Ainun Taimiyah Indra Muhammad , Jagabandhu Patra , Yasser Ashraf Gandomi , Quan-Feng Dong , Sheng-Wei Lee , Chung-Jen Tseng , Jeng-Kuei Chang

Abstract Robust Ru-based thin films are successfully fabricated by single- (SA) and multiple-annealing (MA) thermal decomposition methods and are utilized as high-performance electrodes for the supercapacitors. Two critical parameters, the annealing temperature and treatment duration, are engineered for synthesizing stable thin-film electrodes. It is found that the SA thermal decomposition technique at 250 °C for 6 h results in stable RuO2 electrodes with remarkable electrochemical performance. The MA approach consists of 2- and 3-stage thermal treatment steps. The maximal capacitance of MA-treated capacitor reaches as high as 308.8 F g-1. The MA-treated electrodes deliver exceptional rate capability as well as superior cycling stability (93% capacitance retention upon 2000 cycles). The enhanced performance is attributed to the multistep thermal stages along with the layer-by-layer deposition, enabling enhanced heat transfer to individual thin layers. An optimal thermal treatment procedure is assessed empowering enhanced capacitive performance due to high hydrous RuO2·xH2O ratio, reduced crystalline structure, facile electrolyte wetting, and stable adhesion between the deposits and the Ti substrate. The robust design of MA-treated thin film deposits paves the way for synthesizing high-performance electrodes for the supercapacitors.

中文翻译:

创建电子和离子电导梯度以提高氧化钌电极的储能性能

摘要 通过单(SA)和多次退火(MA)热分解方法成功制备了坚固的 Ru 基薄膜,并将其用作超级电容器的高性能电极。两个关键参数,退火温度和处理持续时间,设计用于合成稳定的薄膜电极。结果表明,SA 热分解技术在 250°C 下 6 小时可得到稳定的 RuO2 电极,具有显着的电化学性能。MA 方法包括 2 阶段和 3 阶段热处理步骤。MA 处理的电容器的最大电容高达 308.8 F g-1。MA 处理过的电极具有出色的倍率性能和出色的循环稳定性(2000 次循环后电容保持率为 93%)。增强的性能归因于多步热阶段以及逐层沉积,从而增强了对单个薄层的热传递。由于高水合 RuO2·xH2O 比率、减少的晶体结构、容易的电解质润湿以及沉积物与 Ti 基材之间的稳定粘附,因此评估了最佳热处理程序,从而增强了电容性能。MA 处理的薄膜沉积物的稳健设计为合成用于超级电容器的高性能电极铺平了道路。沉积物与钛基体之间的稳定粘附。MA 处理的薄膜沉积物的稳健设计为合成用于超级电容器的高性能电极铺平了道路。沉积物与钛基体之间的稳定附着力。MA 处理的薄膜沉积物的稳健设计为合成用于超级电容器的高性能电极铺平了道路。
更新日期:2020-11-01
down
wechat
bug