当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A parametric study of dehydrogenation of various Liquid Organic Hydrogen Carrier (LOHC) materials and its application to methanation process
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.ijhydene.2020.10.188
Mujahid Naseem , Muhammad Usman , Sangyong Lee

Global warming is one of the arch challenges of this era mainly caused by the increasing concentration of carbon dioxide in the atmosphere. Methanation process utilizes carbon dioxide and hydrogen to produce methane gas as an energy-rich fuel. To supply the hydrogen for the methanation process, LOHC could be used as a medium for long-range hydrogen transportation. However, the heat of reaction is needed to recover hydrogen from the LOHC medium. In this study, a new method to utilize the heat from the methanation process for dehydrogenation and optimum conditions are calculated for various LOHC materials. The new process designed uses an Air-Brayton cycle to generate the required high pressure as well as compensate for the LOHC dehydrogenation thermal energy requirement using a proportionate amount of methane produced. Also, the performance of various LOHC materials is compared in the proposed process. The simulation is performed via Aspen Plus® simulator. Dibenzyltoluene is found to be the best selection among the selected LOHC materials for use in this process with a system efficiency of 46.7% with a 100% medium recovery. Pyrrole group LOHC exhibits lower dehydrogenation temperature and energy requirement however are prone to bond scission and generally toxic. Toluene has high volatility resulting in its maximum recovery limited to 96.2% at an elevated pressure of 7 bar decreasing to 84.5% at 1 bar and 30 °C with a system efficiency of 49.08% and a low CVA of 36.74%, while NEC has 63.78% CVA with 55.64% efficiency and DBT has 54.12% CVA with 47.99% efficiency.



中文翻译:

各种液态有机氢载体(LOHC)材料脱氢的参数研究及其在甲烷化过程中的应用

全球变暖是这个时代的主要挑战之一,主要是由于大气中二氧化碳浓度的增加所致。甲烷化过程利用二氧化碳和氢气产生甲烷气,将其作为一种富含能量的燃料。为了为甲烷化过程提供氢气,LOHC可用作远程氢气运输的介质。但是,需要反应热才能从LOHC介质中回收氢。在这项研究中,针对各种LOHC材料,计算了一种利用甲烷化过程中的热量进行脱氢的最佳方法和最佳条件。设计的新工艺使用空气布雷顿循环来产生所需的高压,并使用一定比例的甲烷来补偿LOHC脱氢热能的需求。也,在提议的过程中比较了各种LOHC材料的性能。通过AspenPlus®模拟器进行仿真。发现二苄基甲苯是在此过程中使用的所选LOHC材料中的最佳选择,系统效率为46.7%,介质回收率为100%。吡咯基LOHC的脱氢温度和能量需求较低,但是容易断裂,通常具有毒性。甲苯具有高挥发性,导致在7 bar的高压下最大回收率限制为96.2%,在1 bar和30°C时降至84.5%,系统效率为49.08%,CVA为36.74%,而NEC为63.78 CVA的百分比为55.64%,DBT的CVA为54.12%的效率为47.99%。通过AspenPlus®模拟器进行仿真。发现二苄基甲苯是在此过程中使用的所选LOHC材料中的最佳选择,系统效率为46.7%,介质回收率为100%。吡咯基LOHC的脱氢温度和能量需求较低,但是容易断裂,通常具有毒性。甲苯具有高挥发性,导致在7 bar的高压下最大回收率限制为96.2%,在1 bar和30°C时降至84.5%,系统效率为49.08%,CVA为36.74%,而NEC为63.78 CVA的百分比为55.64%,DBT的CVA为54.12%的效率为47.99%。通过AspenPlus®模拟器进行仿真。发现二苄基甲苯是在此过程中使用的所选LOHC材料中的最佳选择,系统效率为46.7%,介质回收率为100%。吡咯基LOHC的脱氢温度和能量需求较低,但是容易断裂,通常具有毒性。甲苯具有高挥发性,导致在7 bar的高压下最大回收率限制为96.2%,在1 bar和30°C时降至84.5%,系统效率为49.08%,CVA为36.74%,而NEC为63.78 CVA的百分比为55.64%,DBT的CVA为54.12%的效率为47.99%。吡咯基LOHC的脱氢温度和能量需求较低,但是容易断裂,通常具有毒性。甲苯具有高挥发性,导致在7 bar的高压下最大回收率限制为96.2%,在1 bar和30°C时降至84.5%,系统效率为49.08%,CVA为36.74%,而NEC为63.78 CVA的百分比为55.64%,DBT的CVA为54.12%的效率为47.99%。吡咯基LOHC的脱氢温度和能量需求较低,但是容易断裂,通常具有毒性。甲苯具有高挥发性,导致在7 bar的高压下最大回收率限制为96.2%,在1 bar和30°C时降至84.5%,系统效率为49.08%,CVA为36.74%,而NEC为63.78 CVA的百分比为55.64%,DBT的CVA为54.12%,效率为47.99%。

更新日期:2021-01-07
down
wechat
bug