当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Employing one-step coupling cold plasma and thermal polymerization approach to construct nitrogen defect-rich carbon nitrides toward efficient visible-light-driven hydrogen generation
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.ijhydene.2020.11.019
Dong Wang , Xiaojun Gu , Guanwei Liu , Guofang Huang , Yue Cao , Yan Guo

Construction of structural defects in photocatalysts is a powerful tool for regulating their photocatalytic performance. In this work, we develop a facile one-step coupling cold plasma and thermal polymerization approach to synthesize a series of nitrogen defect-rich graphitic carbon nitrides (C3N4-x), which are used for visible-light-driven hydrogen generation from water. The nitrogen defect-induced band structure regulation of C3N4-x catalysts can be carried out through controlling the bombardment time and excitation power of generator during the plasma modification process. The defective C3N4-x catalysts have the extended visible light absorption and improved separation efficiency of photogenerated charge carriers, which results in the boosted hydrogen generation activity. Particularly, the optimal C3N4-x possesses a hydrogen generation rate of 2.46 mmol h−1 g−1, which is about 4.5 times higher than the pristine C3N4 synthesized by the single thermal polymerization of urea. The cold plasma modification-based one-step synthesis approach guides us for rationally designing defective nanomaterials with excellent catalytic performance.



中文翻译:

采用一步耦合的冷等离子体和热聚合方法来构建富氮缺陷的碳氮化物,以有效地产生可见光驱动氢

光催化剂中结构缺陷的构建是调节其光催化性能的有力工具。在这项工作中,我们开发了一种简便的单步耦合冷等离子体和热聚合方法,以合成一系列富氮缺陷的石墨碳氮化物(C 3 N 4-x),用于可见光驱动的制氢从水。通过控制等离子体改性过程中发生器的轰击时间和激发功率,可以进行氮缺陷引起的C 3 N 4-x催化剂的能带结构调节。有缺陷的C 3 N 4-x催化剂具有扩展的可见光吸收能力和提高了光生载流子的分离效率,从而提高了氢的产生活性。特别地,最佳的C 3 N 4-x具有2.46mmol h -1  g -1的氢生成速率,这是通过尿素的单热聚合合成的原始C 3 N 4的约4.5倍。基于冷等离子体改性的一步合成方法指导我们合理设计具有优异催化性能的有缺陷的纳米材料。

更新日期:2020-11-22
down
wechat
bug