当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Hotspots and Cooling Strategy For Multilayer Three-Dimesional Integrated Circuits
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.applthermaleng.2020.116336
Chao Wang , Xiao-Jie Huang , Kambiz Vafai

The effects of geometric and thermal properties of multilayer nominal three-dimensional chip on the temperature hotspots are investigated in this work. Based on heat-transfer computational fluid dynamic analysis, various effective parameters which correlate with reducing the hotspot temperature are studied. A new analytical method for the equivalent thermal conductivity of the thermal interface material (TIM) layer and the chip layer structure in the multilayer chip is proposed, the deviation between the present results and the prior literature is less than 2%. For different chip structures and through silicon vias (TSV) arrangements, the higher the number of multi-layer chips subject to a low Reynolds number, the higher the hotspot temperature. The hotspot temperature gradually decreases linearly with an increase in the Reynolds number. For a convective cooling environment, comparing the two cases with and without the TSV, the variation of Nusselt number for the chip package surface facing the coolant is less than 1. The staggered core structure has a lower hotspot temperature for the no TSV case. When the Core-Centralized TSV is introduced, the overlapping core structure influences the internal heat dissipation the most. When the Reynolds number increases to 2000 and the number of chip layers is greater than 10, the hotspot temperature is almost insensitive to the chip layer and the hotspot temperature difference among different multilayer 3D chips does not exceed 0.2%. The layer where the hotspot temperature exists is different for different TSV arrangements.



中文翻译:

多层三维集成电路的热点和冷却策略分析

在这项工作中,研究了多层标称三维芯片的几何和热性能对温度热点的影响。基于传热计算流体动力学分析,研究了与降低热点温度相关的各种有效参数。提出了一种新的分析方法,用于分析多层芯片中热界面材料(TIM)层和芯片层结构的等效热导率,目前的结果与现有文献之间的偏差小于2%。对于不同的芯片结构和硅通孔(TSV)布置,受雷诺数低影响的多层芯片数量越多,热点温度越高。热点温度随着雷诺数的增加而线性地逐渐降低。对于对流冷却环境,将有和没有TSV的两种情况进行比较,面对冷却剂的芯片封装表面的Nusselt值变化小于1。对于没有TSV的情况,交错的芯结构的热点温度较低。引入以核心为中心的TSV时,重叠的核心结构对内部散热的影响最大。当雷诺数增加到2000并且芯片层数大于10时,热点温度几乎对芯片层不敏感,并且不同多层3D芯片之间的热点温差不超过0.2%。对于不同的TSV布置,热点温度所在的层是不同的。对于面对冷却剂的芯片封装表面,Nusselt值的变化小于1。对于没有TSV的情况,交错的芯结构的热点温度较低。引入以核心为中心的TSV时,重叠的核心结构对内部散热的影响最大。当雷诺数增加到2000并且芯片层数大于10时,热点温度几乎对芯片层不敏感,并且不同多层3D芯片之间的热点温差不超过0.2%。对于不同的TSV布置,热点温度所在的层是不同的。对于面对冷却剂的芯片封装表面,Nusselt值的变化小于1。对于没有TSV的情况,交错的芯结构的热点温度较低。引入以核心为中心的TSV时,重叠的核心结构对内部散热的影响最大。当雷诺数增加到2000并且芯片层数大于10时,热点温度几乎对芯片层不敏感,并且不同多层3D芯片之间的热点温差不超过0.2%。对于不同的TSV布置,热点温度所在的层是不同的。重叠的芯结构对内部散热的影响最大。当雷诺数增加到2000并且芯片层数大于10时,热点温度几乎对芯片层不敏感,并且不同多层3D芯片之间的热点温差不超过0.2%。对于不同的TSV布置,热点温度所在的层是不同的。重叠的芯结构对内部散热的影响最大。当雷诺数增加到2000并且芯片层数大于10时,热点温度几乎对芯片层不敏感,并且不同多层3D芯片之间的热点温差不超过0.2%。对于不同的TSV布置,热点温度所在的层是不同的。

更新日期:2020-11-22
down
wechat
bug