当前位置: X-MOL 学术Int. J. Life Cycle Assess. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Life cycle assessment of wind farms in Ethiopia
The International Journal of Life Cycle Assessment ( IF 4.8 ) Pub Date : 2020-11-21 , DOI: 10.1007/s11367-020-01834-5
Belay Teffera , Berhanu Assefa , Anna Björklund , Getachew Assefa

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region. Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years. The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively. The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

中文翻译:

埃塞俄比亚风电场生命周期评估

本研究的总体目标是为创建埃塞俄比亚发电系统的 LCA 数据库做出贡献。本研究专门评估了与向国家电网提供高压电力的风力发电系统相关的环境影响。该研究具有区域意义,因为埃塞俄比亚电力系统已经在向苏丹和吉布提供电,并计划向该地区的其他国家供电。针对埃塞俄比亚的情况,分析了三种不同的并网风力发电系统,其中包括四种不同型号的风力涡轮机,功率在 1 到 1.67 MW 之间。评估考虑到整个系统的所有生命周期阶段,从摇篮到坟墓,考虑与风电场相关的所有过程:原材料获取、主要部件的制造、运输到风场、建设、运行和维护,以及最终的拆除和废物处理。该研究是根据 ISO 14040 和 ISO 14044 标准程序的主要原则开发的。分析使用 SimaPro 软件 8.0.3.14 多用户、Ecoinvent 数据库版本 3.01 和 ReCiPe 2008 影响评估方法完成。作为基准的假设运行寿命为 20 年。埃塞俄比亚风力发电系统每千瓦时电力产生的平均中点环境影响是气候变化:33.6 克二氧化碳当量,化石消耗:8 克石油当量,淡水生态毒性:0.023 克 1,4-DCB 当量,淡水富营养化: 0.005 g N eq.,人类毒性:9.9 g 1,4-DCB eq.,金属消耗:18.7 g Fe eq.,海洋生态毒性:0.098 g 1,4-DCB eq.,颗粒物形成:0.097 g PM10 当量,光化学氧化剂形成:0.144 g NMVOC,和陆地酸化:0.21 g SO2 当量。包括上游生命周期阶段在内的运营前阶段是所有环境影响的最大贡献者,占比在 82% 至 96% 之间。风电系统的累积能源需求(CED)和能源投资回报(EROI)值分别为0.393 MJ和9.2。运营前阶段是所有环境影响类别的最大贡献者。敏感性和情景分析表明,风力涡轮机寿命、容量因素、零件汇率、运输路线和处理活动的变化将导致 LCA 结果发生重大变化。和陆地酸化:0.21 g SO2 当量。包括上游生命周期阶段在内的运营前阶段是所有环境影响的最大贡献者,占比在 82% 至 96% 之间。风电系统的累积能源需求(CED)和能源投资回报(EROI)值分别为0.393 MJ和9.2。运营前阶段是所有环境影响类别的最大贡献者。敏感性和情景分析表明,风力涡轮机寿命、容量因素、零件汇率、运输路线和处理活动的变化将导致 LCA 结果发生重大变化。和陆地酸化:0.21 g SO2 当量。包括上游生命周期阶段在内的运营前阶段是所有环境影响的最大贡献者,占比在 82% 至 96% 之间。风电系统的累积能源需求(CED)和能源投资回报(EROI)值分别为0.393 MJ和9.2。运营前阶段是所有环境影响类别的最大贡献者。敏感性和情景分析表明,风力涡轮机寿命、容量因素、零件汇率、运输路线和处理活动的变化将导致 LCA 结果发生重大变化。持股比例在 82% 至 96% 之间。风电系统的累积能源需求(CED)和能源投资回报(EROI)值分别为0.393 MJ和9.2。运营前阶段是所有环境影响类别的最大贡献者。敏感性和情景分析表明,风力涡轮机寿命、容量因素、零件汇率、运输路线和处理活动的变化将导致 LCA 结果发生重大变化。持股比例在 82% 至 96% 之间。风电系统的累积能源需求(CED)和能源投资回报(EROI)值分别为0.393 MJ和9.2。运营前阶段是所有环境影响类别的最大贡献者。敏感性和情景分析表明,风力涡轮机寿命、容量因素、零件汇率、运输路线和处理活动的变化将导致 LCA 结果发生重大变化。
更新日期:2020-11-21
down
wechat
bug