当前位置: X-MOL 学术J. Mater. Sci. Mater. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space charge characteristics of micron- and nano-BiFeO 3 /LDPE composites under a magnetic field
Journal of Materials Science: Materials in Electronics ( IF 2.8 ) Pub Date : 2020-11-22 , DOI: 10.1007/s10854-020-04846-x
Yuzhang Fan , Wei Song , Lin Li , Yu Hua , Jiaming Yang , Zhi Sun , Bai Han

This paper mainly studies the effects of the composites which is low-density polyethylene (LDPE) modified by BiFeO3 powder on space charge characteristics under external magnetic field treatment. In comparison, the nano-BiFeO3 powder is irregular and small when the micron-BiFeO3 powder has regular shape and overlapping structure. XRD shows that BiFeO3 powders used in materials have pure phase. According to the DSC and magnetic properties, the saturation magnetization and crystallinity of the composites under the magnetic field treatment are significantly higher than that of pure LDPE. According to the space charge test, the space charge content in the composite is lower than that in the pure LDPE, when the space charge content of nano-composites is less than that in the micron-composites, and the space charge content is lower at 1 wt% concentration. Under the magnetic field treatment, the space charge distribution of the composites can be promoted; meanwhile, the electric field distribution of the composites can be more balanced. Overall, nano-composites has the best inhibition effect on space charge accumulation, followed by class B micron-composites. The inhibition effect of class A micron-composites is worst; electric field distribution is uneven at the same time.



中文翻译:

磁场下微米和纳米BiFeO 3 / LDPE复合材料的空间电荷特性

本文主要研究了BiFeO 3粉末改性的低密度聚乙烯(LDPE)复合材料在外部磁场处理下对空间电荷特性的影响。相比之下,当微米BiFeO 3粉末具有规则形状和重叠结构时,纳米BiFeO 3粉末不规则且小。X射线衍射表明BiFeO 3材料中使用的粉末具有纯相。根据DSC和磁性能,经过磁场处理的复合材料的饱和磁化强度和结晶度明显高于纯LDPE。根据空间电荷测试,当纳米复合材料的空间电荷含量小于微米复合材料的空间电荷含量时,复合材料中的空间电荷含量低于纯LDPE中的空间电荷含量。 1重量%浓度。在磁场的作用下,可以促进复合材料的空间电荷分布。同时,复合材料的电场分布可以更加平衡。总体而言,纳米复合材料对空间电荷积累的抑制作用最佳,其次是B类微米复合材料。A类微米复合物的抑制作用最差;同时电场分布不均匀。

更新日期:2020-11-22
down
wechat
bug