当前位置: X-MOL 学术Biochip J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Verification of Operating Principle of Nano Field-effect Transistor Biosensor with an Extended Gate Electrode
BioChip Journal ( IF 5.5 ) Pub Date : 2020-11-18 , DOI: 10.1007/s13206-020-4410-1
Hye-Lim Kang , Sumi Yoon , Dong-ki Hong , Sunga Song , Young Joo Kim , Won-Hyo Kim , Woo-Kyeong Seong , Kook-Nyung Lee

Many studies have been conducted on the use of nano field-effect transistor (nanoFET) sensors for the detection of biological species. However, the practical application of nanoFET-based biosensors is difficult because their operating principle has not been clarified. Most existing studies focused on ion concentration and pH level in a solution, the Debye length (the physical distance at which charged particles affect the electric field), and the surface potential of the gate electrode of the nanoFET device. In this study, we verified the operating principle of the nanoFET biosensor with an extended gate electrode and established an equivalent circuit. We experimented using a solution with different pH levels to demonstrate the operating principle of the sensor. Additionally, we analyzed the responses of the device based on the material of the extended gate electrode, the effects of the reference electrode, and the connection configuration of the electrodes. We derived an equivalent circuit to explain how the nanoFET sensor works. The analysis results show that the operating principle of measuring pH or biomolecules depends on the change of the polar capacitor in the liquid-electrode interface on the surface of the sensing electrode. The roles of the reference and extended gate electrodes were clearly explained in this paper. The results of this research will improve the understanding of the operating principle of nanoFET-based biosensors and accelerate the studies for practical biosensor applications of nanoFET devices.



中文翻译:

带有扩展栅电极的纳米场效应晶体管生物传感器的工作原理验证

关于使用纳米场效应晶体管(nanoFET)传感器检测生物种类已经进行了许多研究。然而,基于纳米FET的生物传感器的实际应用是困难的,因为尚未阐明其工作原理。现有的大多数研究集中在溶液中的离子浓度和pH值,德拜长度(带电粒子影响电场的物理距离)以及nanoFET器件栅电极的表面电势。在这项研究中,我们验证了具有扩展栅电极的nanoFET生物传感器的工作原理,并建立了等效电路。我们使用具有不同pH值的溶液进行了实验,以证明传感器的工作原理。另外,我们基于扩展栅电极的材料,参比电极的影响以及电极的连接配置来分析设备的响应。我们得出了等效电路来解释nanoFET传感器的工作原理。分析结果表明,测量pH值或生物分子的工作原理取决于感应电极表面液电极界面中极性电容器的变化。在本文中清楚地解释了参考栅电极和扩展栅电极的作用。这项研究的结果将增进对基于nanoFET的生物传感器的工作原理的理解,并加速对nanoFET器件的实际生物传感器应用的研究。以及电极的连接配置。我们得出了等效电路来解释nanoFET传感器的工作原理。分析结果表明,测量pH值或生物分子的工作原理取决于感应电极表面液电极界面中极性电容器的变化。在本文中清楚地说明了参考栅电极和扩展栅电极的作用。这项研究的结果将增进对基于nanoFET的生物传感器的工作原理的理解,并加速对nanoFET器件的实际生物传感器应用的研究。以及电极的连接配置。我们得出了等效电路来解释nanoFET传感器的工作原理。分析结果表明,测量pH值或生物分子的工作原理取决于感应电极表面液电极界面中极性电容器的变化。在本文中清楚地说明了参考栅电极和扩展栅电极的作用。这项研究的结果将增进对基于nanoFET的生物传感器的工作原理的理解,并加速对nanoFET器件的实际生物传感器应用的研究。分析结果表明,测量pH值或生物分子的工作原理取决于感应电极表面液电极界面中极性电容器的变化。在本文中清楚地说明了参考栅电极和扩展栅电极的作用。这项研究的结果将增进对基于nanoFET的生物传感器的工作原理的理解,并加速对nanoFET器件的实际生物传感器应用的研究。分析结果表明,测量pH值或生物分子的工作原理取决于感应电极表面液电极界面中极性电容器的变化。在本文中清楚地说明了参考栅电极和扩展栅电极的作用。这项研究的结果将增进对基于nanoFET的生物传感器的工作原理的理解,并加速对nanoFET器件的实际生物传感器应用的研究。

更新日期:2020-11-22
down
wechat
bug