当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An intriguing hyperelliptic Shimura curve quotient of genus 16
Algebra & Number Theory ( IF 1.3 ) Pub Date : 2020-11-19 , DOI: 10.2140/ant.2020.14.2713
Lassina Dembélé

Let $F$ be the maximal totally real subfield of $\mathbf{Q}(\zeta_{32})$, the cyclotomic field of $32$nd roots of unity. Let $D$ be the quaternion algebra over $F$ ramified exactly at the unique prime above $2$ and 7 of the real places of $F$. Let $\mathcal{O}$ be a maximal order in $D$, and $X_0^D(1)$ the Shimura curve attached to $\mathcal{O}$. Let $C = X_0^D(1)/\langle w_D \rangle$, where $w_D$ is the unique Atkin-Lehner involution on $X_0^D(1)$. We show that the curve $C$ has several striking features. First, it is a hyperelliptic curve of genus $16$, whose hyperelliptic involution is exceptional. Second, there are $34$ Weierstrass points on $C$, and exactly half of these points are CM points; they are defined over the Hilbert class field of the unique CM extension $E/F$ of class number $17$ contained in $\mathbf{Q}(\zeta_{64})$, the cyclotomic field of $64$th roots of unity. Third, the normal closure of the field of $2$-torsion of the Jacobian of $C$ is the Harbater field $N$, the unique Galois number field $N/\mathbf{Q}$ unramified outside $2$ and $\infty$, with Galois group $\mathrm{Gal}(N/\mathbf{Q})\simeq F_{17} = \mathbf{Z}/17\mathbf{Z} \rtimes (\mathbf{Z}/17\mathbf{Z})^\times$. In fact, the Jacobian $\mathrm{Jac}(X_0^D(1))$ has the remarkable property that each of its simple factors has a $2$-torsion field whose normal closure is the field $N$. Finally, and perhaps the most striking fact about $C$ is that it is also hyperelliptic over $\mathbf{Q}$.

中文翻译:

一个有趣的超椭圆 Shimura 曲线商属 16

令 $F$ 是 $\mathbf{Q}(\zeta_{32})$ 的最大全实子域,$32$nd 个单位根的分圆域。令 $D$ 是 $F$ 上的四元数代数,恰好在 $2$ 之上的唯一质数和 $F$ 的 7 个实数位上。设 $\mathcal{O}$ 是 $D$ 中的最大阶数,$X_0^D(1)$ 是附加到 $\mathcal{O}$ 的 Shimura 曲线。令 $C = X_0^D(1)/\langle w_D \rangle$,其中 $w_D$ 是 $X_0^D(1)$ 上唯一的 Atkin-Lehner 对合。我们表明曲线 $C$ 有几个引人注目的特征。首先,它是$16$属的超椭圆曲线,其超椭圆对合异常。其次,$C$ 上有 $34$ Weierstrass 点数,而这些点数中正好有一半是 CM 点数;它们是在 $\mathbf{Q}(\zeta_{64})$ 中包含的类号 $17$ 的唯一 CM 扩展 $E/F$ 的 Hilbert 类字段上定义的,$64$th 统一根的分圆域。第三,$C$ 雅可比矩阵的$2$-torsion 场的正常闭包是Harbater 场$N$,唯一的伽罗瓦数场$N/\mathbf{Q}$ 在$2$ 和$\infty 之外未分枝$,与伽罗瓦群 $\mathrm{Gal}(N/\mathbf{Q})\simeq F_{17} = \mathbf{Z}/17\mathbf{Z} \rtimes (\mathbf{Z}/17\ mathbf{Z})^\times$。事实上,雅可比矩阵 $\mathrm{Jac}(X_0^D(1))$ 的每个简单因子都有一个 $2$-torsion 场,其正态闭包是场 $N$。最后,也许关于 $C$ 最引人注目的事实是它也是 $\mathbf{Q}$ 上的超椭圆。与伽罗瓦群 $\mathrm{Gal}(N/\mathbf{Q})\simeq F_{17} = \mathbf{Z}/17\mathbf{Z} \rtimes (\mathbf{Z}/17\mathbf{ Z})^\times$。事实上,雅可比矩阵 $\mathrm{Jac}(X_0^D(1))$ 的每个简单因子都有一个 $2$-torsion 场,其正态闭包是场 $N$。最后,也许关于 $C$ 最引人注目的事实是它也是 $\mathbf{Q}$ 上的超椭圆。与伽罗瓦群 $\mathrm{Gal}(N/\mathbf{Q})\simeq F_{17} = \mathbf{Z}/17\mathbf{Z} \rtimes (\mathbf{Z}/17\mathbf{ Z})^\times$。事实上,雅可比矩阵 $\mathrm{Jac}(X_0^D(1))$ 的每个简单因子都有一个 $2$-torsion 场,其正态闭包是 $N$ 场。最后,也许关于 $C$ 最引人注目的事实是它也是 $\mathbf{Q}$ 上的超椭圆。
更新日期:2020-11-19
down
wechat
bug