当前位置: X-MOL 学术Science › 论文详情
Tomorrow's catch
Science ( IF 41.845 ) Pub Date : 2020-11-20 , DOI: 10.1126/science.370.6519.902
Erik Stokstad

Just a half-century ago, the trade in Atlantic salmon relied solely on fish caught in the wild. Salmon farming has since become a global business that generates $18 billion in annual sales. It's a trend seen worldwide: Aquaculture supplies nearly as much protein as capture fisheries, and production has been growing fast. Breeding has been key to the aquaculture boom. Now, advances in genomics are poised to expand and reshape aquaculture by helping improve a multitude of species and traits. Large breeding companies and research institutions are bolstering traditional breeding with genomic insights and tools such as gene chips, which speed up the identification of fish and shellfish carrying desired traits. Top targets include increasing growth rates and resistance to disease and parasites. Breeders are also improving the hardiness of some species, which could help farmers adapt to a shifting climate. And many hope to enhance traits that please consumers, by breeding fish for higher quality fillets, eye-catching colors, or increased levels of nutrients. Amid the enthusiasm about aquaculture's future, however, there are concerns. It's not clear, for example, whether consumers will accept fish and shellfish that have been altered using technologies that rewrite genes or move them between species. And some observers worry genomic breeding efforts are neglecting species important to feeding people in the developing world.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug