当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of long-distance motion of single molecules on a surface
Science ( IF 44.7 ) Pub Date : 2020-11-19 , DOI: 10.1126/science.abd0696
Donato Civita 1 , Marek Kolmer 2 , Grant J. Simpson 1 , An-Ping Li 2 , Stefan Hecht 3, 4, 5 , Leonhard Grill 1
Affiliation  

Telegraphing molecules Scanning tunneling microscope (STM) tips have long been used to manipulate atoms and molecules through direct interactions. Civita et al. now show that at cryogenic temperatures, the bias voltage from an STM tip can propel a large organic molecule, dibromoterfluorene, long distances—tens of nanometers along straight tracks on the flat silver (111) surface (see the Perspective by Esch and Lechner). This electrostatic effect requires the molecule to be oriented along the track, and derivatives lacking bromide groups would change direction. In a dual-tip setup, changing the bias voltage sent and received molecules between two specific points about 60 nanometers apart. Science, this issue p. 957; see also p. 912 Single molecules are sent and received over relatively large distances on precisely defined tracks across a flat metal surface. Spatial control over molecular movement is typically limited because motion at the atomic scale follows stochastic processes. We used scanning tunneling microscopy to bring single molecules into a stable orientation of high translational mobility where they moved along precisely defined tracks. Single dibromoterfluorene molecules moved over large distances of 150 nanometers with extremely high spatial precision of 0.1 angstrom across a silver (111) surface. The electrostatic nature of the effect enabled the selective application of repulsive and attractive forces to send or receive single molecules. The high control allows us to precisely move an individual and specific molecular entity between two separate probes, opening avenues for velocity measurements and thus energy dissipation studies of single molecules in real time during diffusion and collision.

中文翻译:

控制表面上单个分子的长距离运动

电报分子 扫描隧道显微镜 (STM) 尖端长期以来一直用于通过直接相互作用来操纵原子和分子。奇维塔等人。现在表明,在低温下,来自 STM 尖端的偏置电压可以推动大有机分子二溴三苯并长距离——沿着平坦的银 (111) 表面上的直线轨迹数十纳米(参见 Esch 和 Lechner 的观点)。这种静电效应要求分子沿轨道定向,而缺少溴基团的衍生物会改变方向。在双尖端设置中,改变在相距约 60 纳米的两个特定点之间发送和接收分子的偏置电压。科学,这个问题 p。957; 另见第 912 单个分子在平坦金属表面上精确定义的轨道上以相对较大的距离发送和接收。对分子运动的空间控制通常是有限的,因为原子尺度的运动遵循随机过程。我们使用扫描隧道显微镜将单个分子带入具有高平移迁移率的稳定方向,在那里它们沿着精确定义的轨道移动。单个二溴三苯并芴分子在银 (111) 表面上以 0.1 埃的极高空间精度在 150 纳米的大距离上移动。该效应的静电性质使得选择性地应用排斥力和吸引力来发送或接收单个分子。高度控制使我们能够在两个单独的探针之间精确地移动单个和特定的分子实体,
更新日期:2020-11-19
down
wechat
bug