当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gold nanobipyramid-embedded silver–platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions
Nanoscale ( IF 6.7 ) Pub Date : 2020-11-04 , DOI: 10.1039/d0nr03315d
Juan Xu 1, 2, 3, 4 , Qinru Yun 1, 2, 3, 4 , Changshun Wang 1, 2, 3, 4 , Manman Li 4, 5, 6, 7, 8 , Si Cheng 4, 5, 6, 7, 8 , Qifeng Ruan 9, 10, 11, 12 , Xingzhong Zhu 1, 2, 3, 4 , Caixia Kan 1, 2, 3, 4
Affiliation  

Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core–shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.

中文翻译:

金纳米双锥包埋的银-铂空心纳米结构,用于监测逐步还原和氧化反应

基于金纳米双锥体(Au NBP)的金属空心纳米结构对于可调谐等离振子共振和出色的物理化学性质的结合非常感兴趣。基于具有所需尺寸的核-壳Au NBP @ Ag纳米棒,我们在此报告了具有可调厚度和尺寸的Au NBP嵌入的AgPt空心纳米结构的合成和生长机理。Au NBP @ AgPt纳米框架是在较低温度下获得的,其中十六烷基三甲基溴化铵(CTAB)被用作封端剂,以指导Pt原子在Au NBPs @ Ag纳米棒的边缘和角落沉积。随着反应温度的升高,Au NBP @ AgPt纳米框架由于原子迁移到表面而转变成纳米笼。Au NBP @ AgPt空心纳米结构的表面等离子体共振从红色转变为蓝色,这归因于AgPt合金的覆盖面积和位置部位的变化。当CTAB被十六烷基三甲基氯化铵(CTAC)取代时,Au NBP @ AgPt纳米笼占主导地位。纳米笼的表面粗糙度和厚度可以通过温度和Pt前体的量来控制。此外,Au NBP @ AgPt中空纳米结构显示出出色的表面增强拉曼散射,并在恶劣环境下显示出显着的稳定性。考虑到等离子体性质(Au NBPs),催化活性(Pt)和等离子体增强信号(Ag)的优势,Au NBP @ AgPt中空纳米结构是催化反应技术应用的有希望的候选者。Au NBP @ AgPt纳米笼主导了该产品。纳米笼的表面粗糙度和厚度可以通过温度和Pt前体的量来控制。此外,Au NBP @ AgPt中空纳米结构显示出出色的表面增强拉曼散射,并在恶劣环境下显示出显着的稳定性。考虑到等离子体性质(Au NBPs),催化活性(Pt)和等离子体激元增强信号(Ag)的优势,Au NBP @ AgPt中空纳米结构是催化反应技术应用的有希望的候选者。Au NBP @ AgPt纳米笼主导了该产品。纳米笼的表面粗糙度和厚度可以通过温度和Pt前体的量来控制。此外,Au NBP @ AgPt中空纳米结构显示出出色的表面增强拉曼散射,并在恶劣环境下显示出显着的稳定性。考虑到等离子体性质(Au NBPs),催化活性(Pt)和等离子体增强信号(Ag)的优势,Au NBP @ AgPt中空纳米结构是催化反应技术应用的有希望的候选者。Au NBP @ AgPt中空纳米结构显示出出色的表面增强拉曼散射,并在恶劣环境下显示出显着的稳定性。考虑到等离子体性质(Au NBPs),催化活性(Pt)和等离子体增强信号(Ag)的优势,Au NBP @ AgPt中空纳米结构是催化反应技术应用的有希望的候选者。Au NBP @ AgPt中空纳米结构显示出出色的表面增强拉曼散射,并在恶劣环境下显示出显着的稳定性。考虑到等离子体性质(Au NBPs),催化活性(Pt)和等离子体激元增强信号(Ag)的优势,Au NBP @ AgPt中空纳米结构是催化反应技术应用的有希望的候选者。
更新日期:2020-11-21
down
wechat
bug