当前位置: X-MOL 学术Proc. IEEE › 论文详情
Efficient AI System Design With Cross-Layer Approximate Computing
Proceedings of the IEEE ( IF 10.252 ) Pub Date : 2020-11-10 , DOI: 10.1109/jproc.2020.3029453
Swagath Venkataramani; Xiao Sun; Naigang Wang; Chia-Yu Chen; Jungwook Choi; Mingu Kang; Ankur Agarwal; Jinwook Oh; Shubham Jain; Tina Babinsky; Nianzheng Cao; Thomas Fox; Bruce Fleischer; George Gristede; Michael Guillorn; Howard Haynie; Hiroshi Inoue; Kazuaki Ishizaki; Michael Klaiber; Shih-Hsien Lo; Gary Maier; Silvia Mueller; Michael Scheuermann; Eri Ogawa; Marcel Schaal; Mauricio Serrano; Joel Silberman; Christos Vezyrtzis; Wei Wang; Fanchieh Yee; Jintao Zhang; Matthew Ziegler; Ching Zhou; Moriyoshi Ohara; Pong-Fei Lu; Brian Curran; Sunil Shukla; Vijayalakshmi Srinivasan; Leland Chang; Kailash Gopalakrishnan

Advances in deep neural networks (DNNs) and the availability of massive real-world data have enabled superhuman levels of accuracy on many AI tasks and ushered the explosive growth of AI workloads across the spectrum of computing devices. However, their superior accuracy comes at a high computational cost, which necessitates approaches beyond traditional computing paradigms to improve their operational efficiency. Leveraging the application-level insight of error resilience, we demonstrate how approximate computing (AxC) can significantly boost the efficiency of AI platforms and play a pivotal role in the broader adoption of AI-based applications and services. To this end, we present RaPiD, a multi-tera operations per second (TOPS) AI hardware accelerator core (fabricated at 14-nm technology) that we built from the ground-up using AxC techniques across the stack including algorithms, architecture, programmability, and hardware. We highlight the workload-guided systematic explorations of AxC techniques for AI, including custom number representations, quantization/pruning methodologies, mixed-precision architecture design, instruction sets, and compiler technologies with quality programmability, employed in the RaPiD accelerator.
更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
有机所林亮
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug