当前位置: X-MOL 学术Int. J. Distrib. Sens. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical research on impact performance of bridge columns with aluminum foam protection devices
International Journal of Distributed Sensor Networks ( IF 1.9 ) Pub Date : 2020-11-01 , DOI: 10.1177/1550147720974538
Yuye Zhang 1 , Ruiyang Pan 1 , Feng Xiao 1
Affiliation  

This article presents a new protection device using aluminum foam to enhance the impact resistance of bridge columns. First, the protection device is designed according to the characteristics of aluminum foam material. The geometric configuration and structure of the device are described. Second, the impact performance of bridge column is analyzed, including impact force analysis, damage analysis, and the influence of axial load. Third, three-dimensional solid element models of columns with and without the protection device are developed in order to verify the effect of the protection device. By comparing dynamic responses of vehicle impact on columns with and without the protection device, it is considered that the protection device has certain protection effect: after installing the protective device, the peak value of impact force reduces by 37.5%, the maximum displacement of column top reduces by 23.7%, the maximum stress at column bottom reduces by 51.6%, the maximum stress at column bottom reduces by 51.6%, the maximum acceleration of the vehicle reduces by 40.6%, and 86.84% of the impact energy is absorbed by the protection device. Finally, the devices with different foam thicknesses and porosities are comparatively analyzed to investigate the influence of these design parameters on impact performance. The results show that the increase in the thickness of aluminum foam has positive effects on the protection capability. The protection capability improves with aluminum foam porosity increasing when the porosity is less than 60%.

中文翻译:

泡沫铝保护装置桥柱冲击性能数值研究

本文介绍了一种使用泡沫铝增强桥柱抗冲击能力的新型保护装置。一、保护装置是根据泡沫铝材料的特性设计的。描述了该装置的几何配置和结构。其次,对桥柱的冲击性能进行了分析,包括冲击力分析、损伤分析以及轴向荷载的影响。第三,建立了带保护装置和不带保护装置的柱的三维实体单元模型,以验证保护装置的效果。通过比较有无保护装置时车辆对立柱冲击的动态响应,认为保护装置具有一定的保护作用:安装保护装置后,冲击力峰值降低了37。5%,柱顶最大位移降低23.7%,柱底最大应力降低51.6%,柱底最大应力降低51.6%,车辆最大加速度降低40.6%,86.84%的冲击能量被保护装置吸收。最后,对具有不同泡沫厚度和孔隙率的装置进行了比较分析,以研究这些设计参数对冲击性能的影响。结果表明,泡沫铝厚度的增加对防护能力有积极影响。当孔隙率小于60%时,保护能力随着泡沫铝孔隙率的增加而提高。柱底最大应力降低51.6%,车辆最大加速度降低40.6%,86.84%的冲击能量被保护装置吸收。最后,对具有不同泡沫厚度和孔隙率的装置进行了比较分析,以研究这些设计参数对冲击性能的影响。结果表明,泡沫铝厚度的增加对防护能力有积极影响。当孔隙率小于60%时,保护能力随着泡沫铝孔隙率的增加而提高。柱底最大应力降低51.6%,车辆最大加速度降低40.6%,86.84%的冲击能量被保护装置吸收。最后,对具有不同泡沫厚度和孔隙率的装置进行了比较分析,以研究这些设计参数对冲击性能的影响。结果表明,泡沫铝厚度的增加对防护能力有积极影响。当孔隙率小于60%时,保护能力随着泡沫铝孔隙率的增加而提高。对具有不同泡沫厚度和孔隙率的装置进行了比较分析,以研究这些设计参数对冲击性能的影响。结果表明,泡沫铝厚度的增加对防护能力有积极影响。当孔隙率小于60%时,保护能力随着泡沫铝孔隙率的增加而提高。对具有不同泡沫厚度和孔隙率的装置进行了比较分析,以研究这些设计参数对冲击性能的影响。结果表明,泡沫铝厚度的增加对防护能力有积极影响。当孔隙率小于60%时,保护能力随着泡沫铝孔隙率的增加而提高。
更新日期:2020-11-01
down
wechat
bug