当前位置: X-MOL 学术Am. J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative structural stiffness: Exploiting 3D-printing
American Journal of Physics ( IF 0.9 ) Pub Date : 2020-12-01 , DOI: 10.1119/10.0001756
Lawrence N. Virgin 1
Affiliation  

The teaching of structural stiffness is one of the keystones of the undergraduate curriculum in mechanics and the strength of materials. Standard linear theory, going back to Hooke's law, has proven to be very successful in predicting the performance of elastic structures under load. Many courses in basic mechanics have a conventional laboratory component often involving a universal testing machine and extensometer. However, the advent of 3D printing presents an appealing pedagogical opportunity mid-way between theory and a formal lab experience. The material contained in this paper focuses on using the 3D printing of relatively simple, flexible cantilever structures. The relatively high resolution of modern 3D printers facilitates the production of slender (elastically deformable) structures, and thus provides an opportunity to exploit geometric parametric variations to enhance a practical understanding of fundamental mechanics concepts such as stiffness. This approach has proved successful in initial inclusion in both the classroom via demonstration models, as well as in the lab in which elementary facilities can be utilized to acquire data. The boundary conditions associated with a cantilever, and the application of a point force are especially simple to produce in practice, and provide an effective tactile demonstration of the influence of geometrical changes on the relation between force and deflection, i.e., stiffness.

中文翻译:

比较结构刚度:利用 3D 打印

结构刚度的教学是力学和材料强度专业本科课程的重点之一。标准线性理论,追溯到胡克定律,已被证明在预测负载下弹性结构的性能方面非常成功。许多基础力学课程都有传统的实验室组件,通常涉及万能试验机和引伸计。然而,3D 打印的出现在理论和正式实验室体验之间提供了一个有吸引力的教学机会。本文中包含的材料侧重于使用相对简单、灵活的悬臂结构的 3D 打印。现代 3D 打印机相对较高的分辨率有助于生产细长(可弹性变形)结构,从而提供了利用几何参数变化来增强对基本力学概念(例如刚度)的实际理解的机会。事实证明,这种方法在最初通过演示模型应用于课堂以及可以利用基本设施获取数据的实验室中是成功的。与悬臂相关的边界条件和点力的应用在实践中特别容易产生,并且提供了几何变化对力和挠度之间的关系(即刚度)影响的有效触觉演示。事实证明,这种方法在最初通过演示模型应用于课堂以及可以利用基本设施获取数据的实验室中是成功的。与悬臂相关的边界条件和点力的应用在实践中特别容易产生,并且提供了几何变化对力和挠度之间的关系(即刚度)影响的有效触觉演示。事实证明,这种方法在最初通过演示模型应用于课堂以及可以利用基本设施获取数据的实验室中是成功的。与悬臂相关的边界条件和点力的应用在实践中特别容易产生,并且提供了几何变化对力和挠度之间的关系(即刚度)影响的有效触觉演示。
更新日期:2020-12-01
down
wechat
bug