当前位置: X-MOL 学术Forum Math. Sigma › 论文详情
Noncommutative strong maximals and almost uniform convergence in several directions
Forum of Mathematics, Sigma ( IF 1.464 ) Pub Date : 2020-11-20 , DOI: 10.1017/fms.2020.37
José M. Conde-Alonso; Adrián M. González-Pérez; Javier Parcet

Our first result is a noncommutative form of the Jessen-Marcinkiewicz-Zygmund theorem for the maximal limit of multiparametric martingales or ergodic means. It implies bilateral almost uniform convergence (a noncommutative analogue of almost everywhere convergence) with initial data in the expected Orlicz spaces. A key ingredient is the introduction of the $L_p$ -norm of the $\limsup $ of a sequence of operators as a localized version of a $\ell _\infty /c_0$ -valued $L_p$ -space. In particular, our main result gives a strong $L_1$ -estimate for the $\limsup $ —as opposed to the usual weak $L_{1,\infty }$ -estimate for the $\mathop {\mathrm {sup}}\limits $ —with interesting consequences for the free group algebra.

Let $\mathcal{L} \mathbf{F} _2$ denote the free group algebra with $2$ generators, and consider the free Poisson semigroup generated by the usual length function. It is an open problem to determine the largest class inside $L_1(\mathcal{L} \mathbf{F} _2)$ for which the free Poisson semigroup converges to the initial data. Currently, the best known result is $L \log ^2 L(\mathcal{L} \mathbf{F} _2)$ . We improve this result by adding to it the operators in $L_1(\mathcal{L} \mathbf{F} _2)$ spanned by words without signs changes. Contrary to other related results in the literature, this set grows exponentially with length. The proof relies on our estimates for the noncommutative $\limsup $ together with new transference techniques.

We also establish a noncommutative form of Córdoba/Feffermann/Guzmán inequality for the strong maximal: more precisely, a weak $(\Phi ,\Phi )$ inequality—as opposed to weak $(\Phi ,1)$ —for noncommutative multiparametric martingales and $\Phi (s) = s (1 + \log _+ s)^{2 + \varepsilon }$ . This logarithmic power is an $\varepsilon $ -perturbation of the expected optimal one. The proof combines a refinement of Cuculescu’s construction with a quantum probabilistic interpretation of M. de Guzmán’s original argument. The commutative form of our argument gives the simplest known proof of this classical inequality. A few interesting consequences are derived for Cuculescu’s projections.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug