当前位置: X-MOL 学术Front. Environ. Sci. › 论文详情
Fluorescent Microplastic Uptake by Immune Cells of Atlantic Salmon (Salmo salar L.)
Frontiers in Environmental Science ( IF 2.749 ) Pub Date : 2020-10-27 , DOI: 10.3389/fenvs.2020.560206
Isabel S. Abihssira-García; Youngjin Park; Viswanath Kiron; Pål A. Olsvik

The ubiquitous presence of microplastics and their marine ecotoxicity are major public concerns. Microplastics are ingested accidentally by the marine fauna or are taken up indirectly through the food chain. These particles can accumulate in cells and tissues and affect the normal biological functions of organisms, including their defense mechanisms. There is limited information available about the response of immune cells to microplastics; the degree of uptake by the cells, the response of different organs or the impact of environmental concentrations of microplastic are matters that remain unclear. Moreover, very little is known about the toxicity of different polymer types. This study aimed to shed light on the physical impact of small microplastics (1–5 μm) on cells from Atlantic salmon. Immune cells from intestine, blood, and head kidney were exposed to green fluorescent polyethylene microplastic (PE-MP), yellow fluorescent polystyrene microplastic (PS-MP) and both. High (50 mg/L), medium (5 mg/L), and low (0.05 mg/L) concentrations were tested for 1, 24, 48, and 72 h to study cell mortality and microplastic uptake. Quantitative data of microplastic uptake by fish immune cells were obtained for the first time by imaging flow cytometry. Salmon immune cells showed a relatively low ability to phagocytose microplastics. Less than 6% of the cells ingested the particles after 48 h of exposure to high concentrations. Cells also phagocytosed microplastics at low concentrations although at low rates (<0.1%). PE-MPs was phagocytosed by higher percentage of cells compared to PS-MPs and the former bioaccumulated in time while the latter decreased over time. However, each cell generally phagocytosed more PS-MPs particles than PE-MPs. Cells from different tissues showed different responses to the microplastic polymers. In conclusion, this study shows that immune cells of Atlantic salmon can phagocytose microplastics, and the impact is dependent on the microplastic type. PE-MPs, the most abundant polymer in the oceans and a widely used plastic in salmon aquaculture, was more easily taken up than PS-MPs. Furthermore, the study demonstrates how imaging flow cytometry can be applied in microplastics research.

更新日期:2020-11-21
全部期刊列表>>
美国矿物金属材料学期刊
地学环境科学SCI期刊
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
朱守非
南方科技大学
杨财广
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug