当前位置: X-MOL 学术Sensors › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions
Sensors ( IF 3.4 ) Pub Date : 2020-11-20 , DOI: 10.3390/s20226648
Lukas Bäni , Andreas Alexopoulos , Marina Artuso , Felix Bachmair , Marcin Bartosik , Helge Beck , Vincenzo Bellini , Vladimir Belyaev , Benjamin Bentele , Alexandre Bes , Jean-Marie Brom , Gabriele Chiodini , Dominik Chren , Vladimir Cindro , Gilles Claus , Johann Collot , John Cumalat , Sébastien Curtoni , Anne Dabrowski , Raffaello D’Alessandro , Denis Dauvergne , Wim De Boer , Christian Dorfer , Marc Dünser , Gerald Eigen , Vladimir Eremin , Jacopo Forneris , Laurent Gallin-Martel , Marie-Laure Gallin-Martel , Kock Gan , Martin Gastal , Abderrahman Ghimouz , Mathieu Goffe , Joel Goldstein , Alexander Golubev , Andrej Gorišek , Eugene Grigoriev , Jörn Grosse-Knetter , Aidan Grummer , Bojan Hiti , Dmitry Hits , Martin Hoeferkamp , Jérôme Hosselet , Fabian Hügging , Chris Hutson , Jens Janssen , Harris Kagan , Keida Kanxheri , Richard Kass , Mladen Kis , Gregor Kramberger , Sergey Kuleshov , Ana Lacoste , Stefano Lagomarsino , Alessandro Lo Giudice , Ivan López Paz , Eric Lukosi , Chaker Maazouzi , Igor Mandić , Sara Marcatili , Alysia Marino , Cédric Mathieu , Mauro Menichelli , Marko Mikuž , Arianna Morozzi , Francesco Moscatelli , Joshua Moss , Raymond Mountain , Alexander Oh , Paolo Olivero , Daniele Passeri , Heinz Pernegger , Roberto Perrino , Federico Picollo , Michal Pomorski , Renato Potenza , Arnulf Quadt , Fatah Rarbi , Alessandro Re , Michael Reichmann , Shaun Roe , Olivier Rossetto , Diego Sanz Becerra , Christian Schmidt , Stephen Schnetzer , Silvio Sciortino , Andrea Scorzoni , Sally Seidel , Leonello Servoli , Dale Smith , Bruno Sopko , Vit Sopko , Stefania Spagnolo , Stefan Spanier , Kevin Stenson , Robert Stone , Bjarne Stugu , Concetta Sutera , Michael Traeger , William Trischuk , Marco Truccato , Cristina Tuvè , Jaap Velthuis , Stephen Wagner , Rainer Wallny , Jianchun Wang , Norbert Wermes , Jayashani Wickramasinghe , Mahfoud Yamouni , Justas Zalieckas , Marko Zavrtanik , Kazuhiko Hara , Yoichi Ikegami , Osamu Jinnouchi , Takashi Kohriki , Shingo Mitsui , Ryo Nagai , Susumu Terada , Yoshinobu Unno

We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015 protons/cm2, (1.43±0.14) × 1016 neutrons/cm2, and (6.5±1.4) × 1014 pions/cm2, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm2/(p μm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm2/(n μm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm2/(π μm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve.

中文翻译:

CVD金刚石对70 MeV质子,快中子和200 MeV离子的辐射耐受性的研究

我们通过测量由50 GeV的120 GeV强子束产生的电荷,测量了通过化学气相沉积法生长的市售钻石的辐射耐受性 μ在辐照之前和之后在每个金刚石样品上制造的螺距检测器。我们用70 MeV质子辐照了一组样品,用快堆中子(定义为能量大于0.1 MeV),以及第三组具有200 MeV pion的样品,逐步达到(8.8±0.9×10 15质子/ cm 2,(1.43±0.14)×10 16中子/ cm 2,和(6.5±1.4)×10 14 pions / cm 2。通过观察由于强子束通过每个样品而产生的电子-空穴对的分离所引起的电荷,在逐个事件的基础上,作为辐照通量的函数,我们得出结论:一阶损伤方程,并独立计算70 MeV质子,快速反应堆中子和200 MeV离子的损伤常数。我们发现用70 MeV质子辐照的钻石的损伤常数为1.62±0.07统计±0.16系统×10 -18厘米2/p μ,快反应堆中子辐照的金刚石的损伤常数为 2.65±0.13统计±0.18系统×10 -18厘米2/ñ μ,并以200 MeV介子辐照的金刚石的损伤常数为 2.0±0.2统计±0.5系统×10 -18厘米2/π μ。分析了此测量的损伤常数以及我们先前发布的24 GeV质子辐照和800 MeV质子辐照损伤常数数据,以得出化学气相沉积金刚石的第一套相对损伤常数的综合集合。我们发现70 MeV质子的破坏性是24 GeV质子的2.60±0.29倍,快速反应堆中子的破坏性是24 GeV质子的2.60±0.29倍,比24 GeV质子的破坏性高4.3±0.4倍。我们还观察到,对化学汽相沉积金刚石进行的所有质子,中子和介子辐照,所测得的数据均可通过通用损伤曲线来描述。最后,我们确定了多晶化学气相沉积金刚石收集到的电荷的空间均匀性会随着注量的增加而增加,
更新日期:2020-11-21
down
wechat
bug