当前位置: X-MOL 学术ACS Appl. Bio Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-Step Exfoliation/Etching Method to Produce Chitosan-Stabilized Holey Graphene Nanosheets for Superior DNA Adsorption
ACS Applied Bio Materials ( IF 4.6 ) Pub Date : 2020-11-20 , DOI: 10.1021/acsabm.0c00912
Xiaoyun Li 1 , Yi-Chen Li 1 , Shanshan Li 1 , Renhua Xiao 1 , Yingchen Ling 2 , Quhuan Li 2 , Xu Hou 3, 4 , Xiaoying Wang 1
Affiliation  

Holey graphene (HG) features universal applications in adsorption because of the large surface areas and the abundant active sites across the nanopores, but it is difficult to produce HG nanosheets straightforwardly from bulk graphite with current etching methods. Herein, for the first time, we developed a one-step sonication-assisted liquid-phase exfoliation/etching method to produce HG nanosheets from bulk graphite by taking advantage of chitosan for stabilization. With the cavitation bubble collapse stress during the intense sonication, the graphite powders were exfoliated and nanopores of tunable diameters from 40 to 200 nm were generated across the graphene nanosheets. Importantly, with chitosan as the stabilizing agent to reduce the fluid collapse stress transferred onto the graphene nanosheets, the lateral size of HG could be as large as 30 μm. Using this approach, several holey layered crystals (graphite, hexagonal boron nitride, and tungsten disulfide) were fabricated with adequate nanostructures, including lateral size, nanosheet thickness, and nanopore size. Notably, the nanoporous structure endowed the graphene nanosheets with superior high double-stranded DNA adsorption (1253 μg/mg, the highest until now) and excellent DNA protection capacity. Based on this, the HG nanosheets were developed for the surface-mediated reversal gene transfection, displaying appreciable efficiency with the traditional methods.

中文翻译:

一步剥离/蚀刻方法生产壳聚糖稳定的孔石墨烯纳米片以实现出色的 DNA 吸附

多孔石墨烯 (HG) 具有广泛的吸附应用,因为它具有大的表面积和纳米孔中丰富的活性位点,但很难用目前的蚀刻方法直接从块状石墨生产 HG 纳米片。在此,我们首次开发了一种一步超声辅助液相剥离/蚀刻方法,利用壳聚糖进行稳定化,从块状石墨中生产 HG 纳米片。在强烈的超声处理过程中,由于空化气泡破裂应力,石墨粉末被剥离,并且在石墨烯纳米片上产生了直径为 40 至 200 nm 的可调纳米孔。重要的是,用壳聚糖作为稳定剂来减少转移到石墨烯纳米片上的流体塌陷应力,HG 的横向尺寸可高达 30 μm。使用这种方法,制备了具有足够纳米结构(包括横向尺寸、纳米片厚度和纳米孔尺寸)的几种多孔层状晶体(石墨、六方氮化硼和二硫化钨)。值得注意的是,纳米多孔结构赋予石墨烯纳米片优异的双链 DNA 吸附能力(1253 μg/mg,迄今为止最高)和出色的 DNA 保护能力。基于此,HG纳米片被开发用于表面介导的逆转基因转染,与传统方法相比显示出可观的效率。值得注意的是,纳米多孔结构赋予石墨烯纳米片优异的双链 DNA 吸附能力(1253 μg/mg,迄今为止最高)和出色的 DNA 保护能力。基于此,HG纳米片被开发用于表面介导的逆转基因转染,与传统方法相比显示出可观的效率。值得注意的是,纳米多孔结构赋予石墨烯纳米片优异的双链 DNA 吸附能力(1253 μg/mg,迄今为止最高)和出色的 DNA 保护能力。基于此,HG纳米片被开发用于表面介导的逆转基因转染,与传统方法相比显示出可观的效率。
更新日期:2020-12-21
down
wechat
bug