当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Machine-learning iterative calculation of entropy for physical systems [Physics]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.412 ) Pub Date : 2020-12-01 , DOI: 10.1073/pnas.2017042117
Amit Nir, Eran Sela, Roy Beck, Yohai Bar-Sinai

Characterizing the entropy of a system is a crucial, and often computationally costly, step in understanding its thermodynamics. It plays a key role in the study of phase transitions, pattern formation, protein folding, and more. Current methods for entropy estimation suffer from a high computational cost, lack of generality, or inaccuracy and inability to treat complex, strongly interacting systems. In this paper, we present a method, termed machine-learning iterative calculation of entropy (MICE), for calculating the entropy by iteratively dividing the system into smaller subsystems and estimating the mutual information between each pair of halves. The estimation is performed with a recently proposed machine-learning algorithm which works with arbitrary network architectures that can be chosen to fit the structure and symmetries of the system at hand. We show that our method can calculate the entropy of various systems, both thermal and athermal, with state-of-the-art accuracy. Specifically, we study various classical spin systems and identify the jamming point of a bidisperse mixture of soft disks. Finally, we suggest that besides its role in estimating the entropy, the mutual information itself can provide an insightful diagnostic tool in the study of physical systems.

更新日期:2020-12-02
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
内蒙古大学
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug