当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ construction of N-doped amorphous CoFe selenites toward efficient electrocatalytic water oxidation
Journal of Power Sources ( IF 8.1 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.jpowsour.2020.229196
Bin Wang , Ling-Li Zhou , Zhao-Qian Huang , Dong-Sheng Pan , Zheng-Han Guo , Jun-Ling Song

The sluggish oxygen evolution reaction (OER) is considered as a major bottleneck for water splitting. It is critical to search for high performance of OER catalysts with different chemical compositions and structures. Herein, we report a new CoFe selenite with NH4+ cation, further, an amorphous N-doped CoFe selenite can be obtained by an environmentally friendly in situ-method, further, by adjusting the ratio of Co and Fe and calcination temperature, the optimal electrocatalyst shows the lowest overpotential of 242 mV at 10 mA cm−2 on glassy carbon and a small Tafel slope of 59.1 mV dec−1, respectively, besides, this catalyst maintains the current density of 10 mA/cm2 for at least 24 h when applying overpotential of 242 mV. N-doping into this CoFe selenites can tailor its electronic structure, moreover, its mesoporous structure favors the mass transfer, electrolyte diffusion and O2 release, in addition, the electrochemical oxidation processes can provide more active sites due to the surface modification of this CoFe selenites, consequently, exhibiting superior OER performance. This study provides an effective strategy to explore highly active and durable electrocatalysts for water splitting.



中文翻译:

N掺杂非晶态CoFe亚硒酸盐的原位构建对有效的电催化水氧化

缓慢的氧气释放反应(OER)被认为是水分解的主要瓶颈。寻找具有不同化学组成和结构的高性能OER催化剂至关重要。在这里,我们报道了一种新型的带有NH 4 +阳离子的CoFe亚硒酸盐,此外,通过一种环保的原位方法可以得到非晶态的N掺杂CoFe亚硒酸盐,此外,通过调节Co和Fe的比例以及煅烧温度,最佳电催化剂在玻璃碳上的10 mA cm -2处显示最低的过电势,为242 mV,并且Tafel斜率分别为59.1 mV dec -1,此外,该催化剂保持10 mA / cm 2的电流密度当施加242 mV的超电势时至少持续24 h。掺入此CoFe亚硒酸盐的N可以调整其电子结构,此外,其介孔结构有利于传质,电解质扩散和O 2释放,此外,由于该CoFe的表面改性,电化学氧化过程可以提供更多的活性位点因此,亚硒酸盐表现出优异的OER性能。这项研究为探索用于水分解的高活性和持久性电催化剂提供了有效的策略。

更新日期:2020-11-21
down
wechat
bug