当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Enhancement of Fe-C Micro-electrolysis in Water by Magnetic Field: Mechanism, Influential Factors and Application Effectiveness
Journal of Hazardous Materials ( IF 9.038 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.jhazmat.2020.124643
Haodi Zhao; Tong Nie; Huaxin Zhao; Yuhang Liu; Jing Zhang; Qian Ye; Hao Xu; Shihu Shu

Fe-C micro-electrolysis system has been widely used in filters, or as an advanced treatment process in some water treatment plants to treat various wastewater. In this study, Fe-C micro-electrolysis process was enhanced by an economical and environmentally friendly method, applied magnetic field. Batch kinetic experiments and scanning electron micrographs demonstrated a more effective micro-electrolysis and more severely corroded on the surface of Fe-C after applying a magnetic field at pH 3.0. An applied magnetic field reduced the charge-transfer resistance and increased the current density in micro-electrolysis system and Fe-C became more prone to electrochemical corrosion. Corrosion products were proved to be Fe2+, Fe3O4, and C-O, moreover, the formation of them were also increased in the presence of a magnetic field. Base on that, some influential factors like magnetic field flux intensity, Fe-C particle size, pH, Fe-C dosage and its reusability were investigated in this paper. Since Fe2+ release was accelerated in micro-electrolysis system by an applied magnetic field, combination of various advanced oxidation processes were designed to explore the application effectiveness of the system. The degradation rate of target contaminant was significantly improved in the presence of a magnetic field, suggesting it could be a reliable method for wastewater treatment.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug