当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilization of water-gas flow on natural gas hydrate recovery with different depressurization modes
Fuel ( IF 6.7 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.fuel.2020.119583
Huiru Sun , Bingbing Chen , Guojun Zhao , Yuechao Zhao , Mingjun Yang

Abstract Water-gas two-phase flow always exists in the natural gas hydrate production process. It has been confirmed that a suitable water-gas flow rate ratio can efficiently induce hydrate decomposition above hydrate phase equilibrium. Meanwhile, the water-gas flow may help to prevent the ice generation and hydrate reformation that need to be solved in the depressurization process. However, little is known about the synthetic effect mechanism of different depressurization modes and water-gas flow on hydrate decomposition. In this study, the piecewise depressurization, constant depressurization rate, constant gas recovery rate assisted with water-gas flow was used to decompose methane hydrate, respectively. The hydrate decomposition behaviors were investigated via magnetic resonance imaging. The results indicated that the hydrate decomposition characteristics showed spatial dependence, and the decomposition front was moved to the center from the edges along the interface of water and hydrate. Moreover, the higher water-gas flow rate ratio and faster depressurization rate led to a lower energy input (gas and water injection volume) and higher energy recovery rate (hydrate decomposition rate). Compared to sudden depressurization, the ice generation was efficiently avoided and the hydrate decomposition rate was remarkably improved for the all three decomposition modes. By comparison, the combination of piecewise depressurization incorporated with water-gas flow (mode I) was the best mode to recover gas from hydrate reservoirs in our experimental scale.

中文翻译:

不同减压方式下水气流量在天然气水合物采收中的应用

摘要 天然气水合物生产过程中始终存在水气两相流。已经证实,合适的水气流量比可以有效地诱导水合物相平衡以上的水合物分解。同时,水气流动可能有助于防止减压过程中需要解决的冰生成和水合物重整。然而,对于不同降压方式和水气流量对水合物分解的综合影响机制,人们知之甚少。本研究分别采用分段降压、恒降压速率、恒采气速率辅助水气流分解甲烷水合物。通过磁共振成像研究了水合物的分解行为。结果表明,水合物分解特征呈现空间依赖性,分解前沿沿水与水合物界面从边缘向中心移动。此外,较高的水气流量比和较快的降压速度导致较低的能量输入(注气和注水量)和较高的能量回收率(水合物分解率)。与突然降压相比,三种分解模式有效地避免了冰的生成,并且水合物分解速率显着提高。相比之下,在我们的实验规模中,分段减压与水气流动相结合(模式 I)是从水合物储层中回收天然气的最佳模式。分解前沿沿水与水合物界面从边缘向中心移动。此外,较高的水气流量比和较快的降压速度导致较低的能量输入(注气和注水量)和较高的能量回收率(水合物分解率)。与突然降压相比,三种分解模式有效地避免了冰的生成,并且水合物分解速率显着提高。相比之下,在我们的实验规模中,分段减压与水气流动相结合(模式 I)是从水合物储层中回收天然气的最佳模式。分解前沿沿水与水合物界面从边缘向中心移动。此外,较高的水气流量比和较快的降压速度导致较低的能量输入(注气和注水量)和较高的能量回收率(水合物分解率)。与突然降压相比,三种分解模式有效地避免了冰的生成,并且水合物分解速率显着提高。相比之下,在我们的实验规模中,分段减压与水气流动相结合(模式 I)是从水合物储层中回收天然气的最佳模式。较高的水气流量比和较快的降压速率导致较低的能量输入(注气和注水量)和较高的能量回收率(水合物分解率)。与突然降压相比,三种分解模式有效地避免了冰的生成,水合物分解速率显着提高。相比之下,在我们的实验规模中,分段减压与水气流动相结合(模式 I)是从水合物储层中回收天然气的最佳模式。较高的水气流量比和较快的降压速率导致较低的能量输入(注气和注水量)和较高的能量回收率(水合物分解率)。与突然降压相比,三种分解模式有效地避免了冰的生成,并且水合物分解速率显着提高。相比之下,在我们的实验规模中,分段减压与水气流动相结合(模式 I)是从水合物储层中回收天然气的最佳模式。
更新日期:2021-03-01
down
wechat
bug