当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting
Energy Conversion and Management ( IF 8.208 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.enconman.2020.113644
Song Ding; Ruojin Li; Zui Tao

The rapidly growing photovoltaic power generation (PPG) instigates stochastic volatility of electricity supply that may compromise the power grid’s stability and increase the grid imbalance cost. Therefore, accurate predictions of long-term PPG are of essential importance for the capacity deployment, plan improvement, consumption enhancement, and grid balance in systems with high penetration levels of PPG. Artificial neuron networks (ANNs) have been widely utilized to forecast the short-term PPG due to their strong nonlinear fitting competence that corresponds to the prerequisite for handling PPG samples characterized by volatility and nonlinearity. However, under the circumstances of the large time span, the insufficient data samples, and the periodicity existing in the long-term PPG datasets, the ANNs are easily stuck in overfitting and generate large forecasting deviations. Given this situation, a novel discrete grey model with time-varying parameters is initially designed to deal with various PPG time series featured with nonlinearity, periodicity, and volatility, which widely exist in the long-term PPG sequences. To be specific, improvements in this proposed model lie in the following aspects: first, the time-power item and periodic item are designated to compose the time-varying parameters to capture the nonlinear, periodic, and fluctuant developing trends of various time series. Second, owing to the complex nonlinear relationships between the above parameters and forecasting errors, the genetic algorithm applies shortcuts to seek optimum solutions and thereby enhances the prediction precision. Third, several practical properties of the proposed model are elaborated to further interpret the feasibility and adaptability of the proposed model. In experiments, a range of machine learning methods, autoregression models, and grey models are involved for comparisons to validate the feasibility and efficacy of the novel model, through the observations of the PPG in America and China. Finally, a superlative performance of the proposed model with the highest forecasting precision, small volatility of empirical results, and generalizability are confirmed by the aforementioned cases.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug