当前位置: X-MOL 学术Chemosphere › 论文详情
Fine particulate matter PM2.5 generated by building demolition increases the malignancy of breast cancer MDA-MB-231 cells
Chemosphere ( IF 5.778 ) Pub Date : 2020-11-20 , DOI: 10.1016/j.chemosphere.2020.129028
Chun-Wen Cheng; Gwo-Tarng Sheu; Jing-Shiuan Chou; Pei-Han Wang; Yu-Chun Cheng; Chane-Yu Lai

Objectives

This study investigates the effects of water-extracted PM2.5 on a triple-negative breast cancer (TNBC) cell line, MDA-MB-231, by sampling suspended particulates around a building demolition site.

Methods

PM2.5 particles were obtained using a high-flow TISCH sampler. Water-soluble PM2.5 were extracted by an ultrasonic oscillator and then freeze-dried. The heavy metal components of soluble PM2.5 was analyzed by ICP-MS. Cell viability was evaluated by MTT assay for cells that were exposed to PM2.5 (200, 400 and 600 μg/mL). Wound healing and transwell cell migration and invasion assays were used to measure cell motility and the invasiveness of cancer cells that had been exposed to PM2.5 into a chemo-attractant substance. Interrelated mechanisms of cancer malignancy were analyzed by Western blot analysis.

Results

Nearby PM2.5 concentrations increased significantly during the deconstruction of buildings, and the Cd, Cu, Pb, Zn and Cr contents of soluble PM2.5 also significantly increased. Following exposure to PM2.5, the survival rate of breast cancer cells was significantly higher than that of the control group. Soluble PM2.5-treated cells had a higher migration capacity. The signaling pathway of FAK/PI3K/AKT proteins was more activated in PM2.5-treated cells than the control group. Increased levels of Aurora B and Bcl-2 were associated with cell proliferation. Elevated levels of cathepsins D, β-catenin, N-cadherin, vimentin and MMP-9 were associated with breast cancer cell metastasis.

Conclusion

Soluble PM2.5 from building demolition may promote/progress in surviving TNBC cells, increasing the malignancy of breast cancer. This study offered evidence of a link between demolition PM2.5 and cancer progression.

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
杨小会
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug