当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling the Large-Scale Fabrication of Supraparticles
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2020-11-19 , DOI: 10.1021/acs.jpcb.0c07306
Alexander Plunkett 1 , Catriona Eldridge 2 , Gerold A. Schneider 1 , Berta Domènech 1
Affiliation  

Controlling the nanoscale interactions of colloidal building blocks is a key step for the transition from single nanoparticles to tailor-made, architected morphologies and their further integration into functional materials. Solvent evaporation-induced self-assembly within emulsion droplets emerges as a fast, versatile, and low-cost approach to obtain spherical, complex structures, such as supraparticles. Nevertheless, some process–structure relationships able to describe the effects of emulsion conditions on the synthesis outcomes still remain to be understood. Here, we explore the effect of different physicochemical parameters of emulsion-templated self-assembly (ETSA) on supraparticles’ formation. Supraparticle size, size dispersity, microporosity, and sample homogeneity are rationalized based on the used surfactant formulation, stabilization mechanism, and viscosity of the emulsion. We further demonstrate the significance of the parameters found by optimizing a transferable, large-scale (gram-size) ETSA setup for the controlled synthesis of spherical supraparticles in a range of defined sizes (from 0.1–10 μm). Ultimately, our results provide new key synthetic parameters able to control the process, promoting the development of supraparticle-based, functional nanomaterials for a wide range of applications.

中文翻译:

控制超微粒子的大规模制造

控制胶体结构单元的纳米级相互作用是从单个纳米颗粒过渡到量身定制的结构形态并将其进一步整合到功能材料中的关键步骤。乳液液滴内溶剂蒸发引起的自组装以快速,通用和低成本的方式出现,以获得球形,复杂的结构,例如超颗粒。然而,仍然能够理解一些能够描述乳液条件对合成结果影响的过程-结构关系。在这里,我们探索乳液模板自组装(ETSA)的不同理化参数对超微粒形成的影响。根据使用的表面活性剂配方合理调整超粒径,粒径分散度,微孔率和样品均一性,稳定机理和乳液的粘度。我们进一步证明了通过优化可转移的大规模(克级)ETSA装置发现的参数的意义,该装置可在规定尺寸(0.1-10μm)范围内以受控方式合成球形超颗粒。最终,我们的结果提供了能够控制该过程的新的关键合成参数,从而促进了基于超颗粒的功能性纳米材料的广泛应用。
更新日期:2020-12-10
down
wechat
bug