当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Thermal Energy to Kinetic Energy: Droplet Motion Triggered by the Leidenfrost Effect
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-11-18 , DOI: 10.1002/admi.202001249
Guanqi Wang 1 , Jonathan R. McDonough 1 , Vladimir Zivkovic 1 , Teng Long 2 , Steven Wang 3
Affiliation  

When a liquid is dropped on a surface significantly hotter than the liquid's boiling point, a vapor film forms beneath the droplet creating an insulation layer sufficient enough to prevent the droplet from rapidly boiling. This phenomenon is known as the Leidenfrost effect, and enables droplets to survive for up to several minutes before fully evaporating. Solids are similarly able to levitate due to sublimation. Furthermore, a liquid droplet placed on a heated flat surface moves randomly, but on a ratcheted substrate, will self‐propel and move unidirectionally along the ratchets. Such a system with no other external energy fields applied is designated a Leidenfrost self‐propulsion device, first introduced by Linke et al. Given the ability of such an arrangement to effectively convert thermal energy into kinetic energy, numerous studies have subsequently attempted to understand and refine the control of motion of the levitated droplets/solids. This review addresses the fundamental understanding of this “heat‐to‐motion” mechanism, where the main focus is conversion of thermal energy into kinetic energy through the unique Leidenfrost self‐propulsion mechanism. Potential applications of Leidenfrost self‐propulsion devices are also discussed, including a brief outlook for the future of this research field.

中文翻译:

从热能到动能:由莱顿弗罗斯特效应触发的液滴运动

当液体滴到比液体沸点高得多的表面上时,在小滴下方会形成蒸气膜,从而形成足以防止小滴迅速沸腾的绝缘层。这种现象称为莱顿弗罗斯特(Leidenfrost)效应,可使液滴在完全蒸发之前能够存活长达几分钟。由于升华,固体同样能够悬浮。此外,放置在加热的平面上的液滴会随机移动,但在带有棘轮的基片上会自我推动并沿棘轮单向移动。这种没有应用其他外部能量场的系统被称为莱顿弗斯特自推进装置,由林克等人首先提出。鉴于这种安排能够有效地将热能转化为动能,随后的大量研究试图理解并完善悬浮液滴/固体运动的控制。这篇综述阐述了对这种“热运动”机制的基本理解,该机制的重点是通过独特的莱顿弗斯特自推进机制将热能转化为动能。还讨论了Leidenfrost自推进装置的潜在应用,包括对该研究领域的未来的简要展望。
更新日期:2021-01-22
down
wechat
bug