当前位置: X-MOL 学术Earth Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermoelastic Response of the Juno Spacecraft's Solar Array/Magnetometer Boom and Its Applicability to Improved Magnetic Field Investigation
Earth and Space Science ( IF 2.9 ) Pub Date : 2020-11-19 , DOI: 10.1029/2020ea001338
M Herceg 1 , P S Jørgensen 1 , J L Jørgensen 1 , J E P Connerney 2, 3
Affiliation  

Juno was inserted into a polar orbit about Jupiter on 4 July 2016. Juno's magnetic field investigation acquires vector measurements of the Jovian magnetic field using a pair of a triaxial Fluxgate Magnetometers (FGMs) colocated with four attitude‐sensing star cameras on an optical bench. The optical bench is placed on a boom at the outer extremity of one of Juno's three solar arrays. The Magnetic Field investigation (MAG) uses measurements of the optical bench inertial attitude provided by the micro‐Advanced Stellar Compass (μASC) to render accurate vector measurements of the planetary magnetic field. During periJoves, orientation of the MAG Optical Benches (MOB) is determined using the spacecraft (SC) attitude combined with transformations between SC and MOB coordinate frames. Substantial prelaunch effort was expended to maximize the thermomechanical stability of the Juno solar arrays and MAG boom. Nevertheless, the Juno flight experience demonstrates that the transformation between SC and MAG reference frames varies significantly in response to spacecraft thermal excursions associated with large attitude maneuvers and proximate encounters with Jupiter. This response is monitored by comparing attitudes provided by the MAG investigation's four Camera Head Units (CHUs) with those provided by the Stellar Reference Unit (SRU). These systematic variations in relative orientation are thought to be caused by the thermoelastic flexure of the Juno solar array in response to temperature excursions associated with maneuvers and heating during close passages of Jupiter. In this paper, we investigate these thermal effects and propose a model for compensation of the MAG boom flexure.

中文翻译:


朱诺号航天器太阳能阵列/磁力计吊杆的热弹性响应及其对改进磁场调查的适用性



朱诺号于 2016 年 7 月 4 日进入围绕木星的极地轨道。朱诺号的磁场调查使用一对三轴磁通门磁力计 (FGM) 和四个姿态感应星相机位于光具座上,获取木星磁场的矢量测量结果。光具座放置在朱诺号三个太阳能电池阵列之一最外端的吊杆上。磁场研究(MAG)使用微型高级恒星罗盘(μASC)提供的光具座惯性姿态测量来提供行星磁场的精确矢量测量。在近周星期间,MAG 光学平台 (MOB) 的方向是通过航天器 (SC) 姿态以及 SC 和 MOB 坐标系之间的转换来确定的。为了最大限度地提高朱诺太阳能电池阵列和 MAG 吊臂的热机械稳定性,发射前投入了大量精力。然而,朱诺号的飞行经验表明,SC 和 MAG 参考系之间的转换在响应与大姿态机动和与木星的接近接触相关的航天器热偏移时存在显着变化。通过将 MAG 调查的四个摄像头单元 (CHU) 提供的态度与恒星参考单元 (SRU) 提供的态度进行比较来监测此响应。这些相对方向的系统变化被认为是由朱诺太阳能电池阵列的热弹性弯曲引起的,该热弹性弯曲响应与木星近距离经过期间的机动和加热相关的温度偏移。在本文中,我们研究了这些热效应并提出了 MAG 动臂弯曲补偿的模型。
更新日期:2020-12-01
down
wechat
bug