当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole‐Transfer Agents
ChemSusChem ( IF 7.5 ) Pub Date : 2020-11-19 , DOI: 10.1002/cssc.202002500
Arindam Indra 1 , Rodrigo Beltrán-Suito 2 , Marco Müller 2 , Ramesh P Sivasankaran 3 , Michael Schwarze 2 , Amitava Acharjya 4 , Bapi Pradhan 5 , Johan Hofkens 5, 6 , Angelika Brückner 3 , Arne Thomas 4 , Prashanth W Menezes 2 , Matthias Driess 2
Affiliation  

Visible light‐driven photocatalytic reduction of protons to H2 is considered a promising way of solar‐to‐chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2) evolution process. Here, for the first time, the hole‐transfer dynamics from Pt‐loaded sol−gel‐prepared graphitic carbon nitride (Pt‐sg‐CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge‐transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time‐resolved photoluminescence and in situ electron paramagnetic resonance studies.

中文翻译:


空穴转移剂促进石墨碳氮化物光催化析氢活性



可见光驱动的质子光催化还原为H 2被认为是太阳能转化为化学能的一种有前途的方式。通过最大限度地减少光生电子和空穴的复合,将光生电子和空穴有效转移到光催化剂表面,对于实现高光催化活性至关重要。通常,牺牲电子供体用作空穴清除剂,以从价带去除光生空穴,以继续光催化析氢(H 2 )过程。在这里,首次使用不同的吸附空穴受体和牺牲剂(抗坏血酸)研究了负载 Pt 的溶胶凝胶制备的石墨氮化碳(Pt-sg-CN)光催化剂的空穴转移动力学。采用吩噻嗪(PTZ)作为空穴受体连续3天产生H 2 ,H 2产量显着增加(4.84倍)。通过时间分辨光致发光和原位电子顺磁共振研究检查了空穴受体存在下光催化过程的详细电荷转移动力学。
更新日期:2021-01-08
down
wechat
bug