当前位置: X-MOL 学术J. Wind Energy Ind. Aerod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel
Journal of Wind Engineering and Industrial Aerodynamics ( IF 4.8 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.jweia.2020.104276
R.A. Catarelli , P.L. Fernández-Cabán , F.J. Masters , J.A. Bridge , K.R. Gurley , C.J. Matyas

Abstract This study presents a two-stage framework to characterize boundary layer wind tunnel (BLWT) approach flows naturally developed over grid roughness for partial atmospheric boundary layer (ABL) simulation. The first stage applies curve fitting techniques to a comprehensive series of high-resolution spatially-averaged velocity profile measurements to estimate aerodynamic roughness parameters (ARPs) for a wide range of homogeneous (i.e., equal height) roughness element configurations. For this study, an automated (i.e., computer-controlled) 62 ​× ​18 roughness element array called the Terraformer was used to generate 33 unique roughness element fields. The mean flow structure was captured downwind to the Terraformer, where key ARPs—i.e., the urban canopy attenuation coefficient, zero-plane displacement height, shear (friction) velocity, roughness length, and Coles’ wake strength coefficient—were estimated. In contrast to previous ABL modeling methods that primarily focused on curve fitting of the inertial sublayer (ISL), the proposed approach applies the urban canopy exponential profile within the roughness sublayer (RSL), the log law in the ISL, and the law of the wake in the outer wake layer to model full-depth (i.e., floor to freestream) rough-wall turbulent boundary layers. Further, the method explicitly captures potential variability of Reynolds shear stress in the ISL and the wake strength in the outer layer to generalize characterization of naturally-developed BLs produced by traditional tunnel designs. The second stage applies a morphometric model for each ARP—calibrated with estimates from Stage 1—to predict flow characteristics for a wide range of roughness element configurations, with the goal of producing a deterministic solution for selecting an element configuration to satisfy user-specified aerodynamic objectives for the approach flow. The calibrated models effectively interpolate between estimates, e.g., ARPs estimated for open and suburban terrains can be applied in the second stage model calibration to predict ARPs for a “rough-open” condition without further experimentation. The findings of this study demonstrate that coupling the proposed framework with a mechanized roughness element grid can significantly reduce the trial-and-error required to commission a BLWT, while improving the quality of flow characterization.

中文翻译:

自动地形生成,用于风洞中精确的大气边界层模拟

摘要 本研究提出了一个两阶段框架来表征边界层风洞 (BLWT) 方法流,用于部分大气边界层 (ABL) 模拟。第一阶段将曲线拟合技术应用于一系列全面的高分辨率空间平均速度剖面测量,以估计各种均匀(即等高)粗糙度元件配置的空气动力学粗糙度参数 (ARP)。在这项研究中,使用称为 Terraformer 的自动化(即计算机控制)62 × 18 粗糙度元素阵列来生成 33 个独特的粗糙度元素场。平均流结构在 Terraformer 的顺风处被捕获,其中关键的 ARPs——即城市冠层衰减系数、零平面位移高度、剪切(摩擦)速度、粗糙度长度和 Coles 的尾流强度系数是估计的。与以前主要侧重于惯性子层 (ISL) 曲线拟合的 ABL 建模方法相比,所提出的方法应用粗糙度子层 (RSL) 内的城市冠层指数剖面、ISL 中的对数定律以及外尾流层中的尾流以模拟全深度(即从底板到自由流)粗糙壁湍流边界层。此外,该方法明确捕获了 ISL 中雷诺剪切应力的潜在可变性和外层中的尾流强度,以概括由传统隧道设计产生的自然开发 BL 的特征。第二阶段为每个 ARP 应用形态测量模型(使用第一阶段的估计值进行校准)来预测各种粗糙度元素配置的流动特性,目的是生成确定性解决方案来选择元素配置以满足用户指定的空气动力学进场流程的目标。校准模型有效地在估计值之间进行插值,例如,针对开阔和郊区地形估计的 ARP 可以应用于第二阶段模型校准,以预测“粗糙开放”条件的 ARP,而无需进一步实验。这项研究的结果表明,将所提出的框架与机械化粗糙度元素网格相结合,可以显着减少调试 BLWT 所需的反复试验,同时提高流动表征的质量。目标是为选择元素配置生成确定性的解决方案,以满足用户为进场流指定的空气动力学目标。校准模型有效地在估计值之间进行插值,例如,针对开阔和郊区地形估计的 ARP 可以应用于第二阶段模型校准,以预测“粗糙开放”条件的 ARP,而无需进一步实验。这项研究的结果表明,将所提出的框架与机械化粗糙度元素网格相结合,可以显着减少调试 BLWT 所需的反复试验,同时提高流动表征的质量。目的是为选择元素配置生成确定性的解决方案,以满足用户为进场流指定的空气动力学目标。校准模型有效地在估计值之间进行插值,例如,针对开阔和郊区地形估计的 ARP 可以应用于第二阶段模型校准,以预测“粗糙开放”条件的 ARP,而无需进一步实验。这项研究的结果表明,将所提出的框架与机械化粗糙度元素网格相结合,可以显着减少调试 BLWT 所需的反复试验,同时提高流动表征的质量。校准模型有效地在估计值之间进行插值,例如,针对开阔和郊区地形估计的 ARP 可以应用于第二阶段模型校准,以预测“粗糙开放”条件的 ARP,而无需进一步实验。这项研究的结果表明,将所提出的框架与机械化粗糙度元素网格相结合,可以显着减少调试 BLWT 所需的反复试验,同时提高流动表征的质量。校准模型有效地在估计值之间进行插值,例如,针对开阔和郊区地形估计的 ARP 可以应用于第二阶段模型校准,以预测“粗糙开放”条件的 ARP,而无需进一步实验。这项研究的结果表明,将所提出的框架与机械化粗糙度元素网格相结合,可以显着减少调试 BLWT 所需的反复试验,同时提高流动表征的质量。
更新日期:2020-12-01
down
wechat
bug