当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sulfate sulfur isotopes and major ion chemistry reveal that pyrite oxidation counteracts CO2 drawdown from silicate weathering in the Langtang-Trisuli-Narayani River system, Nepal Himalaya
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.gca.2020.11.009
P.C. Kemeny , G.I. Lopez , N.F. Dalleska , M. Torres , A. Burke , M.P. Bhatt , A.J. West , J. Hartmann , J.F. Adkins

Drawdown of atmospheric carbon dioxide (CO₂) due to silicate weathering in the Himalaya has previously been implicated in Cenozoic cooling. However, over timescales shorter than that of the removal of marine sulfate (SO₄²⁻), the oxidation of pyrite (FeS₂) in weathering systems can counteract the alkalinity flux of silicate weathering and modulate pCO₂. Here we present evidence from sulfur isotope ratios in dissolved SO4²⁻ (δ³⁴S_(SO₄)), together with dissolved major ion concentrations, that reveals FeS₂ oxidation throughout the Langtang-Trisuli-Narayani River system of the Nepal Himalaya. River water samples were collected monthly to bi-monthly throughout 2011 from 16 sites ranging from the Lirung Glacier catchment through the Narayani River floodplain. This sampling transect begins in the High Himalayan Crystalline (HHC) formation and passes through the Lesser Himalayan (LH) formation with upstream influences from the Tethyn Sedimentary Series (TSS). Average δ³⁴S_(SO₄) in the Lirung Glacier outlet is 3.6‰, increases downstream to 6.3‰ near the confluence with the Bhote Kosi, and finally declines to -2.6‰ in the lower sites. Using new measurements of major ion concentrations, inversion shows 62-101% of river SO₄²⁻ is derived from the oxidation of sulfide minerals and/or organic sulfur, with the former process likely dominant. The fraction of H₂SO₄-driven weathering is seasonally variable and lower during the monsoon season, attributable to seasonal changes in the relative influence of shallow and deep flow paths with distinct residence times. Inversion results indicate that the primary control on δ³⁴S_(SO₄) is lithologically variable isotope composition, with the expressed δ³⁴S value for the LH and TSS formations (median values -7.0‰ to 0.0‰ in 80% of samples) lower than that in the HHC (median values 1.7‰ to 6.2‰ in 80% of samples). Overall, our inversion indicates that FeS₂ oxidation counteracts much of the alkalinity flux from silicate weathering throughout the Narayani River system such that weathering along the sampled transect exerts minimal impact on pCO₂ over timescales >5-10 Kyr and <10 Myr. Moreover, reanalysis of prior datasets suggests that our findings are applicable more widely across several of the frontal Himalayan drainages.

中文翻译:

硫酸盐硫同位素和主要离子化学表明黄铁矿氧化抵消了尼泊尔喜马拉雅山 Langtang-Trisuli-Narayani 河系统中硅酸盐风化产生的 CO2 下降

由于喜马拉雅山的硅酸盐风化,大气中二氧化碳 (CO₂) 的下降此前曾与新生代冷却有关。然而,在比去除海洋硫酸盐 (SO₄²⁻) 更短的时间尺度上,风化系统中黄铁矿 (FeS₂) 的氧化可以抵消硅酸盐风化的碱度通量并调节 pCO₂。在这里,我们提供了来自溶解的 SO4²⁻ (δ³⁴S_(SO₄)) 中硫同位素比率的证据,以及溶解的主要离子浓度,这些证据揭示了尼泊尔喜马拉雅山的 Langtang-Trisuli-Narayani 河系统中的 FeS₂ 氧化。整个 2011 年,从利隆冰川集水区到纳拉亚尼河泛滥平原的 16 个地点,每月或每两个月收集一次河流水样。该取样横断面始于高喜马拉雅结晶 (HHC) 地层,并通过小喜马拉雅 (LH) 地层,受特斯恩沉积系列 (TSS) 的上游影响。利隆冰川出口的平均δ³⁴S_(SO₄)为3.6‰,下游在与Bhote Kosi汇合处附近增加到6.3‰,最后在低处下降到-2.6‰。使用对主要离子浓度的新测量,反演显示 62-101% 的河流 SO₄²⁻ 来自硫化矿物和/或有机硫的氧化,前一个过程可能占主导地位。H₂SO₄ 驱动的风化部分随季节变化,在季风季节较低,这归因于具有不同停留时间的浅层和深层流动路径的相对影响的季节性变化。反演结果表明,对δ³⁴S_(SO₄)的主要控制是岩性同位素组成,LH和TSS地层的δ³⁴S表达值(80%样品中值-7.0‰至0.0‰)低于HHC (80% 的样本中值为 1.7‰ 至 6.2‰)。总的来说,我们的反演表明,FeS 2 氧化抵消了整个 Narayani 河系统中硅酸盐风化产生的大部分碱度通量,因此沿采样断面的风化对 pCO 2 的影响最小,时间跨度大于 5-10 Kyr 和 <10 Myr。此外,对先前数据集的重新分析表明,我们的发现更广泛地适用于几个喜马拉雅前缘水系。0‰ 至 0.0‰(80% 的样品)低于 HHC(80% 的样品中值为 1.7‰ 至 6.2‰)。总的来说,我们的反演表明,FeS 2 氧化抵消了整个 Narayani 河系统中硅酸盐风化产生的大部分碱度通量,因此沿采样断面的风化对 pCO 2 的影响最小,时间跨度大于 5-10 Kyr 和 <10 Myr。此外,对先前数据集的重新分析表明,我们的发现更广泛地适用于几个喜马拉雅前缘水系。0‰ 至 0.0‰(80% 的样品)低于 HHC(80% 的样品中值为 1.7‰ 至 6.2‰)。总的来说,我们的反演表明,FeS 2 氧化抵消了整个 Narayani 河系统中硅酸盐风化产生的大部分碱度通量,因此沿采样断面的风化对 pCO 2 的影响最小,时间跨度大于 5-10 Kyr 和 <10 Myr。此外,对先前数据集的重新分析表明,我们的发现更广泛地适用于几个喜马拉雅前缘水系。我们的反演表明,FeS 2 氧化抵消了整个 Narayani 河系统中硅酸盐风化产生的大部分碱度通量,因此沿采样断面的风化在 >5-10 Kyr 和 <10 Myr 的时间尺度上对 pCO2 的影响最小。此外,对先前数据集的重新分析表明,我们的发现更广泛地适用于几个喜马拉雅前缘水系。我们的反演表明,FeS 2 氧化抵消了整个 Narayani 河系统中硅酸盐风化产生的大部分碱度通量,因此沿采样断面的风化在 >5-10 Kyr 和 <10 Myr 的时间尺度上对 pCO2 的影响最小。此外,对先前数据集的重新分析表明,我们的发现更广泛地适用于几个喜马拉雅前缘水系。
更新日期:2021-02-01
down
wechat
bug