当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I
Chem ( IF 19.1 ) Pub Date : 2020-11-19 , DOI: 10.1016/j.chempr.2020.10.024
Martijn Tros , Vincenzo Mascoli , Gaozhong Shen , Ming-Yang Ho , Luca Bersanini , Christopher J. Gisriel , Donald A. Bryant , Roberta Croce

Photosystem I (PSI) converts photons into electrons with a nearly 100% quantum efficiency. Its minimal energy requirement for photochemistry corresponds to a 700-nm photon, representing the well-known “red limit” of oxygenic photosynthesis. Recently, some cyanobacteria containing the red-shifted pigment chlorophyll f have been shown to harvest photons up to 800 nm. To investigate the mechanism responsible for converting such low-energy photons, we applied steady-state and time-resolved spectroscopies to the chlorophyll-f-containing PSI and chlorophyll-a-only PSI of various cyanobacterial strains. Chlorophyll-f-containing PSI displays a less optimal energetic connectivity between its pigments. Nonetheless, it consistently traps long-wavelength excitations with a surprisingly high efficiency, which can only be achieved by lowering the energy required for photochemistry, i.e., by “breaking the red limit”. We propose that charge separation occurs via a low-energy charge-transfer state to reconcile this finding with the available structural data excluding the involvement of chlorophyll f in photochemistry.



中文翻译:

突破红色极限:高效捕获含有叶绿素-f的光系统I中的长波激发

光系统I(PSI)将光子转换为具有近100%量子效率的电子。它对光化学的最低能量要求对应于700 nm光子,代表了氧光合作用的众所周知的“红色极限”。最近,一些含有红移色素叶绿素f的蓝细菌已显示出可收获高达800 nm的光子。为了研究引起这种低能光子转化的机制,我们将稳态和时间分辨光谱学应用于各种蓝藻菌株的含叶绿素f的PSI和仅叶绿素a的PSI。叶绿素f含PSI的颜料之间的能量连接性欠佳。尽管如此,它始终以惊人的高效率捕获长波长激发,这只能通过降低光化学所需的能量,即“突破红色极限”来实现。我们建议通过低能电荷转移状态发生电荷分离,以使这一发现与除叶绿素f参与光化学以外的可用结构数据相一致。

更新日期:2021-01-14
down
wechat
bug