当前位置: X-MOL 学术Appl. Geochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fertilizer derived from alkaline hydrothermal alteration of K-feldspar: a micrometer to nanometer-scale investigation of K in secondary reaction products and the feldspar interface
Applied Geochemistry ( IF 3.4 ) Pub Date : 2020-11-19 , DOI: 10.1016/j.apgeochem.2020.104828
Yuanyuan Zhai , Roland Hellmann , Andrea Campos , Nathaniel Findling , Sathish Mayanna , Richard Wirth , Anja Schreiber , Martiane Cabié , Qingdong Zeng , Shanke Liu , Jianming Liu

Global food security concerns have spurred increasing demand for locally sourced and produced K-fertilizers. Various processes have been explored for more than a century; one promising solution is based on the alkaline aqueous alteration of feldspar-rich rocks at elevated temperatures. However, knowledge of the overall physico-chemical reactions comprising dissolution of feldspar and precipitation of secondary phases is still rudimentary, in particular how the feldspar structure evolves at the nm-scale during hydrolysis at alkaline conditions. Here we report on the results of a study aimed at converting potassium feldspars to K-rich fertilizer based on the alteration of sanidine and microcline samples at 190 °C in pH 12 Ca(OH)2 solutions for 24 hours. Based on X-ray diffraction and Rietveld refinement, the secondary authigenic minerals that precipitated are primarily composed of Ca-carbonate (calcite, vaterite), and Ca-(Al)-silicates, such as tobermorite and hydrogrossular. Short-term bench top leaching experiments in water prove that the hydrothermal product releases up to two orders of magnitude more K than the unaltered K-feldspar starting material, pointing to its application as a ready-to-use fertilizer for K-deficient soils. Detailed chemical mapping and energy dispersive X-ray spectroscopy (FESEM- and TEM-EDXS) analyses of the precipitates at the μm to nm-scale show that the distribution of K associated with the secondary phases is very heterogeneous, both spatially and in terms of concentrations. Using various analytical transmission electron microscopy (TEM) techniques, e.g., HRTEM, TEM-EDXS, EFTEM, to investigate the structure and chemistry of the feldspar interface, we find no evidence for a change in chemistry or structure at the nm-scale, even though dissolution continuously decreases the volume of each grain. Our observations also show the existence of an amorphous surface altered layer (SAL) of variable thickness (10 to ∼100 nm) forming at the feldspar interface. Nanometer-scale chemical measurements show that this amorphous SAL is rich in K, and therefore may also be an important reservoir of easily leachable K. We hypothesize that it forms continuously and in situ at the expense of the feldspar by a coupled interfacial dissolution-reprecipitation process (CIDR).



中文翻译:

钾长石的碱性水热变化产生的肥料:次级反应产物和长石界面中钾的微米到纳米级研究

对全球粮食安全的担忧刺激了对本地采购和生产的钾肥需求的增长。一个多世纪以来,人们一直在探索各种过程。一种有前途的解决方案是基于在高温下富长石岩石的碱性水蚀作用。然而,对包括长石溶解和第二相沉淀在内的整个物理化学反应的了解仍是基本的,特别是在碱性条件下水解过程中,长石结构如何在纳米级演化。在这里,我们报告了基于190°C,pH 12 Ca(OH)2的山梨和微碱样品的变化,旨在将钾长石转化为富钾肥料的研究结果。解决方案持续24小时。基于X射线衍射和Rietveld精炼,沉淀的次生自生矿物主要由碳酸钙(方解石,球ate石)和钙(铝)硅酸盐组成,例如钙铁矿和水硬石膏。在水中进行的短期台式浸出实验证明,与未改变的钾长石原料相比,水热产品释放的钾最多高两个数量级,这表明其可作为缺钾土壤的现成肥料使用。详细的化学作图和能量色散X射线能谱(FESEM-和TEM-EDXS)分析从μm到nm规模的沉淀物表明,与次生相相关的K分布在空间和空间上都非常不均匀。浓度。使用HRTEM,TEM-EDXS,EFTEM等各种分析型透射电子显微镜(TEM)技术研究长石界面的结构和化学性质,我们没有发现任何化学或结构在纳米级发生变化的证据,甚至尽管溶解会不断减少每个谷物的体积。我们的观察结果还表明,在长石界面处形成了厚度可变(10至100 nm)的非晶表面变化层(SAL)。纳米级化学测量结果表明,该无定形SAL富含K,因此也可能是易于浸出K的重要储层。我们假设它是通过界面溶解-再沉淀耦合而以长石的形式连续且原位形成的流程(CIDR)。为了研究长石界面的结构和化学性质,我们发现没有证据表明纳米级的化学或结构发生了变化,即使溶解不断降低了每个晶粒的体积。我们的观察结果还表明,在长石界面处形成了厚度可变(10至100 nm)的非晶表面变化层(SAL)。纳米级化学测量结果表明,该无定形SAL富含K,因此也可能是易于浸出K的重要储层。我们假设它是通过界面溶解-再沉淀耦合而以长石的形式连续且原位形成的流程(CIDR)。为了研究长石界面的结构和化学性质,我们发现没有证据表明纳米级的化学或结构发生了变化,即使溶解不断降低了每个晶粒的体积。我们的观察结果还表明,在长石界面处形成了厚度可变(10至100 nm)的非晶表面变化层(SAL)。纳米级化学测量结果表明,该无定形SAL富含K,因此也可能是易于浸出K的重要储层。我们假设它是通过界面溶解-再沉淀耦合而以长石的形式连续且原位形成的流程(CIDR)。即使溶解会不断减少每个颗粒的体积。我们的观察结果还表明,在长石界面处形成了厚度可变(10至100 nm)的非晶表面变化层(SAL)。纳米级化学测量结果表明,该无定形SAL富含K,因此也可能是易于浸出K的重要储层。我们假设它是通过界面溶解-再沉淀耦合而以长石的形式连续且原位形成的流程(CIDR)。即使溶解会不断减少每个颗粒的体积。我们的观察结果还表明,在长石界面处形成了厚度可变(10至100 nm)的非晶表面变化层(SAL)。纳米级化学测量结果表明,该无定形SAL富含K,因此也可能是易于浸出K的重要储层。我们假设它是通过界面溶解-再沉淀耦合而以长石的形式连续且原位形成的流程(CIDR)。

更新日期:2020-11-19
down
wechat
bug