当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and fabrication of a passive upper limb rehabilitation robot with adjustable automatic balance based on variable mass of end-effector
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 1.8 ) Pub Date : 2020-11-19 , DOI: 10.1007/s40430-020-02707-6
Majid Eslami , Ali Mokhtarian , Mostafa Pirmoradian , Alireza Seifzadeh , Masoud Rafiaei

The purpose of this work is to design and fabricate a balanced passive robotic arm with the capability of applying variable mass to the end-effector in order to upper limb rehabilitation. To achieve this purpose, the first step is associated with establishing a robot structural design in the CAD environment. The next step is focused on developing the kinematic model based on the degrees of freedom and joint range of motion of the lower legs. Thereafter, the potential energy functions are determined for the springs and weight of components applied in the mechanism. The genetic algorithm is employed as a proper optimization program to extract the system design parameters, including the spring stiffness coefficients and their placement positions within the system. A prototype is fabricated for a balanced robot, and the end-effector mass variations are utilized to develop an adjustable balance capability. To create balance in the system, several items are designed, consisting of a control panel, two electric motors, and an electronic processor. This situation provides an equivalent force equal to the weight of selected mass from the end-effector to the user’s hand. (It is done by a reverse process.) The actual mass required for robot balance is compared to the mass defined in the simulation environment. The evaluation results indicate that it is possible to create an optimized balance by using the simulation outputs.



中文翻译:

基于末端执行器质量可变的自动平衡可调的被动上肢康复机器人的设计与制造

这项工作的目的是设计和制造一种平衡的被动机器人手臂,该手臂能够将可变质量施加到末端执行器上,以进行上肢康复。为了实现此目的,第一步与在CAD环境中建立机器人结构设计相关。下一步着重于根据小腿的自由度和关节活动范围开发运动学模型。此后,确定弹簧的势能函数和施加在机构中的组件的重量。遗传算法被用作适当的优化程序,以提取系统设计参数,包括弹簧刚度系数及其在系统中的放置位置。为平衡型机器人制作了原型,末端执行器的质量变化可用于开发可调平衡能力。为了在系统中达到平衡,设计了几项,包括控制面板,两个电动机和一个电子处理器。这种情况提供的等效力等于从末端执行器到使用者手部所选质量的重量。(这是通过反向过程完成的。)将机器人平衡所需的实际质量与模拟环境中定义的质量进行比较。评估结果表明,可以通过使用模拟输出来创建优化的余额。这种情况提供的等效力等于从末端执行器到使用者手部所选质量的重量。(这是通过反向过程完成的。)将机器人平衡所需的实际质量与模拟环境中定义的质量进行比较。评估结果表明,可以通过使用模拟输出来创建优化的余额。这种情况提供的等效力等于从末端执行器到使用者手部所选质量的重量。(这是通过反向过程完成的。)将机器人平衡所需的实际质量与模拟环境中定义的质量进行比较。评估结果表明,可以通过使用模拟输出来创建优化的余额。

更新日期:2020-11-19
down
wechat
bug