当前位置: X-MOL 学术Contrib. Mineral. Petrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A unifying basis for the interplay of stress and chemical processes in the Earth: support from diverse experiments
Contributions to Mineralogy and Petrology ( IF 3.5 ) Pub Date : 2020-11-19 , DOI: 10.1007/s00410-020-01750-9
John Wheeler

The interplay between stress and chemical processes is a fundamental aspect of how rocks evolve, relevant for understanding fracturing due to metamorphic volume change, deformation by pressure solution and diffusion creep, and the effects of stress on mineral reactions in crust and mantle. There is no agreed microscale theory for how stress and chemistry interact, so here I review support from eight different types of the experiment for a relationship between stress and chemistry which is specific to individual interfaces: (chemical potential) = (Helmholtz free energy) + (normal stress at interface) × (molar volume). The experiments encompass temperatures from -100 to 1300 degrees C and pressures from 1 bar to 1.8 GPa. The equation applies to boundaries with fluid and to incoherent solid–solid boundaries. It is broadly in accord with experiments that describe the behaviours of free and stressed crystal faces next to solutions, that document flow laws for pressure solution and diffusion creep, that address polymorphic transformations under stress, and that investigate volume changes in solid-state reactions. The accord is not in all cases quantitative, but the equation is still used to assist the explanation. An implication is that the chemical potential varies depending on the interface, so there is no unique driving force for reaction in stressed systems. Instead, the overall evolution will be determined by combinations of reaction pathways and kinetic factors. The equation described here should be a foundation for grain-scale models, which are a prerequisite for predicting larger scale Earth behaviour when stress and chemical processes interact. It is relevant for all depths in the Earth from the uppermost crust (pressure solution in basin compaction, creep on faults), reactive fluid flow systems (serpentinisation), the deeper crust (orogenic metamorphism), the upper mantle (diffusion creep), the transition zone (phase changes in stressed subducting slabs) to the lower mantle and core mantle boundary (diffusion creep).

中文翻译:

地球压力和化学过程相互作用的统一基础:来自不同实验的支持

应力和化学过程之间的相互作用是岩石如何演化的一个基本方面,与理解由于变质体积变化、压力溶解和扩散蠕变引起的变形以及应力对地壳和地幔中矿物反应的影响有关。关于压力和化学如何相互作用没有公认的微观理论,所以在这里我回顾了八种不同类型的实验对压力和化学之间关系的支持,这是特定于单个界面的:(化学势)=(亥姆霍兹自由能)+ (界面处的法向应力)×(摩尔体积)。实验包括 -100 到 1300 摄氏度的温度和 1 巴到 1.8 GPa 的压力。该方程适用于流体边界和非相干固体-固体边界。它与描述自由和受压晶面在溶液旁边的行为、记录压力溶解和扩散蠕变的流动定律、解决应力下的多晶型转变以及研究固态反应中的体积变化的实验大致一致。协议并非在所有情况下都是定量的,但仍然使用等式来辅助解释。这意味着化学势因界面而异,因此在受压系统中没有独特的反应驱动力。相反,整体演变将由反应途径和动力学因素的组合决定。这里描述的方程应该是颗粒尺度模型的基础,这是在应力和化学过程相互作用时预测更大规模地球行为的先决条件。
更新日期:2020-11-19
down
wechat
bug