当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressive Properties of 316L Stainless Steel Topology‐Optimized Lattice Structures Fabricated by Selective Laser Melting
Advanced Engineering Materials ( IF 3.6 ) Pub Date : 2020-11-18 , DOI: 10.1002/adem.202000957
Yangli Xu 1 , Tingting Li 2 , Xuanyang Cao 3 , Yuanqiang Tan 1 , Peihui Luo 1
Affiliation  

Some lattice structures with different relative densities (0.15–0.5) are designed by topology optimization and fabricated by selective laser melting. The temperature history of lattice structures is monitored experimentally to reveal the forming reason of the deviation of relative densities. The effect of relative densities on compressive properties of lattice structures, including mechanical properties, failure mechanism, and energy absorption capabilities, are systematically investigated. The results show that compressive properties of lattice structures vary dramatically with the changing of relative densities. Due to the existence of surface‐shaped struts, the compressive strength of topology‐optimized lattice structures has superior performance comparing to most of the other structures with rod‐shaped struts. The failure mechanism of lattice structures can be changed from shear‐ to bending‐dominated when increasing relative densities as a result of decreasing the thickness of struts. A systematic investigation of the fracture generation of struts is conducted through both deformation analysis and the finite element method. The fitting curves are established successfully to predict the mechanical properties of designed lattice structures. The aforementioned results verify the feasibility of designing high‐performance cellular structures via topology optimization. Moreover, herein a comprehensive solution to tailor desired properties for satisfying the requirements of functional components is provided.

中文翻译:

选择性激光熔化制造的316L不锈钢拓扑优化的晶格结构的压缩特性

通过拓扑优化设计了一些具有不同相对密度(0.15-0.5)的晶格结构,并通过选择性激光熔化来制造它们。通过实验监测晶格结构的温度历史,以揭示相对密度偏差的形成原因。系统地研究了相对密度对晶格结构压缩性能的影响,包括机械性能,破坏机理和能量吸收能力。结果表明,随着相对密度的变化,晶格结构的压缩性能发生显着变化。由于存在表面形支撑,与其他大多数带有杆形支撑的结构相比,拓扑优化的晶格结构的抗压强度具有优越的性能。当由于减小支柱的厚度而增加相对密度时,可以将晶格结构的破坏机理从剪切为主变为弯曲为主。通过变形分析和有限元方法对支柱断裂的产生进行了系统的研究。成功建立了拟合曲线,以预测设计的晶格结构的机械性能。前述结果证明了通过拓扑优化设计高性能蜂窝结构的可行性。此外,在此提供了一种综合解决方案,以定制期望的性能以满足功能组件的要求。通过变形分析和有限元方法对支柱断裂的产生进行了系统的研究。成功建立了拟合曲线,以预测设计的晶格结构的机械性能。前述结果证明了通过拓扑优化设计高性能蜂窝结构的可行性。此外,在此提供了一种综合解决方案,以定制期望的性能以满足功能组件的要求。通过变形分析和有限元方法对支柱断裂的产生进行了系统的研究。成功建立了拟合曲线,以预测设计的晶格结构的机械性能。前述结果证明了通过拓扑优化设计高性能蜂窝结构的可行性。此外,在此提供了一种综合解决方案,以定制期望的性能以满足功能组件的要求。前述结果证明了通过拓扑优化设计高性能蜂窝结构的可行性。此外,在此提供了一种综合解决方案,以定制期望的性能以满足功能组件的要求。前述结果证明了通过拓扑优化设计高性能蜂窝结构的可行性。此外,在此提供了一种综合解决方案,以定制期望的性能以满足功能组件的要求。
更新日期:2020-11-18
down
wechat
bug