当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal transport measurement of three-dimensional graphene powders for application in energy devices
Materials Today Energy ( IF 9.0 ) Pub Date : 2020-11-18 , DOI: 10.1016/j.mtener.2020.100582
C. Li , Z. Liu , X. Zhang , S.W. Hasan , Z.Q. Tian , J. Zhou , Z. Yin

Three-dimensional graphene (3DG) has drawn much attention as a great potential electrode material for its extraordinary properties. However, the heat dissipation involved in the electrochemical reactions or Joule heating during the continuous charge-discharge cycles has become a critical challenge, which significantly affects the performance. In this work, we report the first experimental measurement on the thermal transport properties of 3DG powders under different temperatures and compressive stresses by using the laser flash method. High temperature and stress dependence of thermal transport in 3DG powders were observed from the measurements. The thermal diffusivity and thermal conductivity increase significantly from ~1.52 mm2/s to ~4.90 mm2/s and ~0.40 W/(m·K) to ~1.29 W/(m·K), respectively, with the temperature increment from 25°C to 120°C, corresponding to about 320% enhancement. Besides, we found the thermal conductivity quickly increases at the beginning and then gradually reaches to a saturation value of ~0.65 W/(m·K) with the increase of compressive stress. We proposed the temperature/stress-dependent thermal transport properties resulting from the reduction of thermal contact resistance, which dominates the thermal transport of porous material. These results provide useful guidelines for thermal design and benefit for effective thermal management of 3DG-based energy devices.



中文翻译:

三维石墨烯粉在热能器件中的热输运测量

三维石墨烯(3DG)作为一种出色的潜在电极材料,因其非凡的性能而备受关注。但是,在连续的充放电循环过程中,电化学反应或焦耳加热所涉及的散热问题已成为一项严峻的挑战,这将严重影响性能。在这项工作中,我们报告了使用激光闪光方法对3DG粉末在不同温度和压缩应力下的热传输特性进行的首次实验测量。从测量中观察到3DG粉末中热传输的高温和应力依赖性。热扩散率和导热率从〜1.52 mm 2 / s显着增加到〜4.90 mm 2/ s和〜0.40 W /(m·K)至〜1.29 W /(m·K),温度从25°C升高至120°C,对应约320%的增强。此外,我们发现热导率在开始时迅速增加,然后随着压缩应力的增加逐渐达到饱和值〜0.65 W /(m·K)。我们提出了由热接触电阻降低引起的温度/应力相关的热传输特性,该特性主导了多孔材料的热传输。这些结果为热设计提供了有用的指导,并有益于基于3DG的能源设备的有效热管理。

更新日期:2020-12-11
down
wechat
bug