当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogel membranes made from crosslinked microgel multilayers with tunable density
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2020-11-18 , DOI: 10.1016/j.memsci.2020.118912
D.J. Bell , S. Ludwanowski , A. Lüken , B. Sarikaya , A. Walther , M. Wessling

Membranes with precisely adjustable properties are needed to master the separation challenges in modern biochemical processes. Composite membranes are composed of a conventional membrane and an adaptive coating. Adaptive polymers like polymer brushes or hydrogels have proven to be excellent candidates for this challenge. In the present work we envision the utilization of temperature responsive microgels as colloidal building blocks, forming an adaptive separation layer on top of a porous support. Until now, microgels are mainly used as a functional gating element, influencing the retention or permeability of conventional membranes. In the present study microgel assemblies should be used as the only selective layer. To overcome the repulsive forces between the microgel particles, we utilize the interparticle crosslinking within a microgel filter cake. We could show that the crosslinking leads to stable and responsive microgel multilayers with a temperature responsive retention performance based on charge repulsion and size exclusion. The developed methodology enables the control of the filter cake compression, which can be adjusted and preserved via crosslinking enabling full control over the thickness and density of the selective layer. While the resistance of the crosslinked microgel multilayer shows the classical temperature responsiveness and collapse into a low resistance state, the retention increases simultaneously, indicating that the crosslinked microgels behave like a macroscopic hydrogel.



中文翻译:

由具有可调密度的交联微凝胶多层制成的水凝胶膜

需要具有精确可调性质的膜来应对现代生化过程中的分离难题。复合膜由常规膜和适应性涂层组成。诸如聚合物刷或水凝胶之类的适应性聚合物已被证明是应对这一挑战的极佳选择。在当前的工作中,我们设想利用温度响应性微凝胶作为胶体构建基块,在多孔载体的顶部形成自适应分离层。迄今为止,微凝胶主要用作功能门控元件,影响常规膜的保留或渗透性。在本研究中,微凝胶组件应用作唯一的选择性层。为了克服微凝胶颗粒之间的排斥力,我们利用微凝胶滤饼内的颗粒间交联。我们可以证明,基于电荷排斥和尺寸排阻,交联可产生具有温度响应保留性能的稳定且响应迅速的微凝胶多层。所开发的方法可以控制滤饼压缩,可以通过交联调节和保留滤饼压缩,从而可以完全控制选择层的厚度和密度。尽管交联的微凝胶多层膜的电阻显示出经典的温度响应性并崩溃为低电阻状态,但保留时间同时增加,表明交联的微凝胶的行为类似于宏观水凝胶。我们可以证明,基于电荷排斥和尺寸排阻,交联可产生具有温度响应保留性能的稳定且响应迅速的微凝胶多层。所开发的方法可以控制滤饼压缩,可以通过交联调节和保留滤饼压缩,从而可以完全控制选择层的厚度和密度。尽管交联的微凝胶多层膜的电阻显示出经典的温度响应性并崩溃为低电阻状态,但保留时间同时增加,表明交联的微凝胶的行为类似于宏观水凝胶。我们可以证明,基于电荷排斥和尺寸排阻,交联可产生具有温度响应保留性能的稳定且响应迅速的微凝胶多层。所开发的方法可以控制滤饼压缩,可以通过交联调节和保留滤饼压缩,从而可以完全控制选择层的厚度和密度。尽管交联的微凝胶多层膜的电阻显示出经典的温度响应性并崩溃为低电阻状态,但保留时间同时增加,表明交联的微凝胶的行为类似于宏观水凝胶。可以通过交联进行调节和保存,从而可以完全控制选择层的厚度和密度。尽管交联的微凝胶多层膜的电阻显示出经典的温度响应性并崩溃为低电阻状态,但保留时间同时增加,表明交联的微凝胶的行为类似于宏观水凝胶。可以通过交联进行调节和保存,从而可以完全控制选择层的厚度和密度。尽管交联的微凝胶多层膜的电阻显示出经典的温度响应性并崩溃为低电阻状态,但保留时间同时增加,表明交联的微凝胶的行为类似于宏观水凝胶。

更新日期:2020-11-18
down
wechat
bug