当前位置: X-MOL 学术J. Funct. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations
Journal of Functional Analysis ( IF 1.7 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.jfa.2020.108872
Haoyu Li , Zhi-Qiang Wang

We investigate the structure of nodal solutions for coupled nonlinear Schrodinger equations in the repulsive coupling regime. Among other results, for the following coupled system of $N$ equations, we prove the existence of infinitely many nodal solutions which share the same componentwise-prescribed nodal numbers \begin{equation}\label{ab} \left\{ \begin{array}{lr} -{\Delta}u_{j}+\lambda u_{j}=\mu u^{3}_{j}+\sum_{i\neq j}\beta u_{j}u_{i}^{2} \,\,\,\,\,\,\, in\ \W , u_{j}\in H_{0,r}^{1}(\W), \,\,\,\,\,\,\,\,j=1,\dots,N, \end{array} \right. \end{equation} where $\W$ is a radial domain in $\mathbb R^n$ for $n\leq 3$, $\lambda>0$, $\mu>0$, and $\beta <0$. More precisely, let $p$ be a prime factor of $N$ and write $N=pB$. Suppose $\beta\leq-\frac{\mu}{p-1}$. Then for any given non-negative integers $P_{1},P_{2},\dots,P_{B}$, (\ref{ab}) has infinitely many solutions $(u_{1},\dots,u_{N})$ such that each of these solutions satisfies the same property: for $b=1,...,B$, $u_{pb-p+i}$ changes sign precisely $P_b$ times for $i=1,...,p$. The result reveals the complex nature of the solution structure in the repulsive coupling regime due to componentwise segregation of solutions. Our method is to combine a heat flow approach as deformation with a minimax construction of the symmetric mountain pass theorem using a $\mathbb Z_p$ group action index. Our method is robust, also allowing to give the existence of one solution without assuming any symmetry of the coupling.

中文翻译:

用于耦合薛定谔方程的具有共享分量节点数的多节点解

我们研究了排斥耦合机制中耦合非线性薛定谔方程的节点解的结构。在其他结果中,对于以下 $N$ 方程的耦合系统,我们证明了无限多个节点解的存在,它们共享相同的分量指定节点数 \begin{equation}\label{ab} \left\{\begin{数组}{lr} -{\Delta}u_{j}+\lambda u_{j}=\mu u^{3}_{j}+\sum_{i\neq j}\beta u_{j}u_{ i}^{2} \,\,\,\,\,\,\, in\ \W , u_{j}\in H_{0,r}^{1}(\W), \,\, \,\,\,\,\,\,j=1,\dots,N,\end{array} \right。\end{equation} 其中 $\W$ 是 $\mathbb R^n$ 中的径向域,对于 $n\leq 3$、$\lambda>0$、$\mu>0$ 和 $\beta <0 $. 更准确地说,令 $p$ 是 $N$ 的素因数并写成 $N=pB$。假设 $\beta\leq-\frac{\mu}{p-1}$。然后对于任何给定的非负整数 $P_{1},P_{2},\dots,P_{B}$, (\ref{ab}) 有无穷多个解 $(u_{1},\dots,u_{N})$ 使得这些解中的每一个都满足相同的性质:对于 $b=1,...,B$ , $u_{pb-p+i}$ 为 $i=1,...,p$ 精确更改 $P_b$ 次的符号。结果揭示了由于溶液的组分分离,在排斥耦合机制中溶液结构的复杂性。我们的方法是将热流方法作为变形与使用 $\mathbb Z_p$ 群作用指数的对称山口定理的极小极大构造相结合。我们的方法是稳健的,还允许在不假设耦合的任何对称性的情况下给出一个解决方案的存在。结果揭示了由于溶液的组分分离,在排斥耦合机制中溶液结构的复杂性。我们的方法是将热流方法作为变形与使用 $\mathbb Z_p$ 群作用指数的对称山口定理的极小极大构造相结合。我们的方法是稳健的,还允许在不假设耦合的任何对称性的情况下给出一个解决方案的存在。结果揭示了由于溶液的组分分离,在排斥耦合机制中溶液结构的复杂性。我们的方法是将热流方法作为变形与使用 $\mathbb Z_p$ 群作用指数的对称山口定理的极小极大构造相结合。我们的方法是稳健的,还允许在不假设耦合的任何对称性的情况下给出一个解决方案的存在。
更新日期:2021-04-01
down
wechat
bug