当前位置: X-MOL 学术J. Comput. Syst. Sci. › 论文详情
On approximate pure Nash equilibria in weighted congestion games with polynomial latencies
Journal of Computer and System Sciences ( IF 1.494 ) Pub Date : 2020-11-18 , DOI: 10.1016/j.jcss.2020.10.007
Ioannis Caragiannis; Angelo Fanelli

We consider weighted congestion games with polynomial latency functions of maximum degree d1. For these games, we investigate the existence and efficiency of approximate pure Nash equilibria which are obtained through sequences of unilateral improvement moves by the players. By exploiting a simple technique, we firstly show that these games admit an infinite set of d-approximate potential functions. This implies that there always exists a d-approximate pure Nash equilibrium which can be reached through any sequence of d-approximate improvement moves by the players. As a corollary, we also obtain that, under mild assumptions on the structure of the players' strategies, these games also admit a constant approximate potential function. Secondly, using a simple potential function argument, we are able to show that a (d+δ)-approximate pure Nash equilibrium of cost at most (d+1)/(d+δ) times the cost of an optimal state always exists, for every δ[0,1].

更新日期:2020-11-21
全部期刊列表>>
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
ACS Publications填问卷
阿拉丁试剂right
苏州大学
林亮
南方科技大学
朱守非
胡少伟
有机所林亮
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
上海纽约大学
浙江大学
廖矿标
天合科研
x-mol收录
试剂库存
down
wechat
bug