当前位置: X-MOL 学术Cont. Shelf Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The inner shelf geology of Atlantic Canada compared with the North Sea and Atlantic United States: Insights for Atlantic Canadian offshore wind energy
Continental Shelf Research ( IF 2.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.csr.2020.104297
Jordan B.R. Eamer , John Shaw , Edward L. King , Kevin MacKillop

Abstract The Quaternary history of the Atlantic Canadian inner shelf shares some similarities with the North Sea and northern United States of America (US) Atlantic coast, with the influence of large-scale glaciation and subsequent sea level transgression being the main drivers of seafloor morphology, sedimentology, and uppermost stratigraphy. The geology of the inner shelf, generally confined to 100 m water depth for this study, is an important constraint on the development of offshore renewables, in particular wind energy. Offshore wind has seen rapid growth, particularly in Europe and Asia, where the industry has now experienced decades of production. In the US, one small-scale production farm and many hundreds of MW are in the production pipeline. In contrast, offshore wind in Canada, despite onshore installed wind capacity that ranks highly globally, lacks any operating turbines and there are no plans for development in the wind resource-rich Atlantic Canadian region. In this study, the geological constraints on offshore wind in Atlantic Canada are explored. Generally, the available offshore wind resource is high, and thus the main geophysical constraint on the development of offshore wind energy converters is the inner shelf geology. Several sites with available high-resolution geophysical data are selected for in-depth analysis and comparison with production and planned offshore wind farm sites found elsewhere. In general, a lack of sufficiently thick Quaternary sedimentation—necessary for the most common bottom-fixed foundations for wind turbines—will make developing offshore wind in Atlantic Canada challenging when compared with North Sea and US Atlantic Coast locations. A few locations may be suitable geologically, such as Sable Island Bank in Nova Scotia (thick package of sands), Northumberland Strait between Prince Edward Island and Nova Scotia (shallow firm seabed and sandbanks), Baie des Chaleurs in New Brunswick/Quebec (thick, low relief fine sediments), and St. George's Bay, Newfoundland (shallow, postglacially modified moraine).

中文翻译:

加拿大大西洋内陆架地质与北海和美国大西洋对比:加拿大大西洋海上风能洞察

摘要 大西洋加拿大内陆架的第四纪历史与北海和美国北部大西洋海岸有一些相似之处,大规模冰川作用和随后的海平面海侵是海底形态的主要驱动因素,沉积学和最上层地层学。内陆架的地质情况,通常限制在本研究的 100 m 水深内,是开发海上可再生能源,特别是风能的重要制约因素。海上风电增长迅速,特别是在欧洲和亚洲,该行业现已经历了数十年的生产。在美国,一个小型生产农场和数百兆瓦的电力正在生产中。相比之下,加拿大的海上风电,尽管陆上风电装机容量在全球排名靠前,但缺乏任何运行中的涡轮机,并且在风力资源丰富的加拿大大西洋地区没有开发计划。在这项研究中,探讨了加拿大大西洋沿岸海上风的地质限制。海上风能资源总量普遍较高,制约海上风能转换器发展的主要地球物理约束是内陆架地质。选择了几个具有可用高分辨率地球物理数据的站点进行深入分析,并与其他地方的生产和计划的海上风电场站点进行比较。一般来说,与北海和美国大西洋沿岸地区相比,缺乏足够厚的第四纪沉积物(风力涡轮机最常见的底部固定基础所必需的)将使加拿大大西洋地区的海上风电开发具有挑战性。一些地点在地质上可能是合适的,例如新斯科舍省的 Sable Island Bank(厚沙包)、爱德华王子岛和新斯科舍省之间的诺森伯兰海峡(浅而坚固的海床和沙洲)、新不伦瑞克省/魁北克省的 Baie des Chaleurs(厚沙) ,低浮雕细沉积物)和纽芬兰的圣乔治湾(浅层,冰河后改良的冰碛)。
更新日期:2021-01-01
down
wechat
bug