当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-11-17 , DOI: 10.1039/d0ta08634g
Yue Zhang 1, 2, 3, 4, 5 , Zihe Zhang 6, 7, 8, 9, 10 , Yakun Tang 1, 2, 3, 4, 5 , Dianzeng Jia 1, 2, 3, 4, 5 , Yudai Huang 1, 2, 3, 4, 5 , Yong Guo 1, 2, 3, 4, 5 , Zhen Zhou 6, 7, 8, 9, 10
Affiliation  

Earth-abundant sodium is a promising alternative to lithium in rechargeable batteries. However, graphite, the commercial anode material of lithium-ion batteries, cannot be used for sodium-ion batteries (SIBs). Herein, carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets were synthesized using modified polyacrylonitrile as the carbon source through a simple and economical low-temperature pyrolysis process, delivering high reversible capacity, superior rate capability and remarkable cyclic stability. The surface-dominated redox reaction mechanism in Na storage is the origin of the fast kinetics, since the columnar nanopores which are considered as curled and sealed ultrathin nanosheets, like microjars, not only shorten the ion and electron diffusion length, but also expand the redox sites from the surface to the inner part. This is similar to the storage mechanism in supercapacitors. Moreover, density functional theory computations reveal that the high-level amine groups play an important role in Na storage in the low potential region, endowing the block anode material with both high energy and power density.

中文翻译:

具有用于胺离子电池的胺官能化碳纳米片构成的具有圆柱状纳米孔的碳块阳极

富含地球的钠是可充电电池中锂的有前途的替代品。但是,石墨是锂离子电池的商用负极材料,不能用于钠离子电池(SIB)。在此,以改性聚丙烯腈为碳源,通过简单,经济的低温热解工艺,合成了由胺官能化碳纳米片构成的具有圆柱状纳米孔的碳嵌段阳极,具有高的可逆容量,优异的倍率性能和显着的循环稳定性。Na储存中以表面为主的氧化还原反应机理是快速动力学的起源,因为被视为卷曲和密封的超薄纳米片的圆柱状纳米孔(如微罐)不仅缩短了离子和电子的扩散长度,而且还将氧化还原位点从表面扩展到内部。这类似于超级电容器中的存储机制。此外,密度泛函理论计算表明,高位胺基团在低电位区域的Na储存中起着重要作用,使嵌段阳极材料具有高能量和高功率密度。
更新日期:2020-11-17
down
wechat
bug