当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Chemical Perspective on Climate: Emerging Research into Atmospheric Chemistry Impacts on Earth’s Radiative Balance
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2020-11-17 , DOI: 10.1021/acs.accounts.0c00577
Delphine K. Farmer 1 , Kimberly A. Prather 2
Affiliation  

Guest Editorial for the Accounts of Chemical Research special issue “New Frontiers in Chemistry−Climate Interactions”. Human activities are changing the composition of the atmosphere and, as a result, Earth’s climate. Understanding the extent of these changes and accurately predicting how our decisions and actions influence the magnitude of those changes require a detailed understanding of long-lived climate forcers in the atmosphere, including greenhouse gases, and short-lived climate forcers such as tropospheric ozone and aerosols. Atmospheric chemistry plays a central role in climate, dictating both the sources of many secondary climate forcers (e.g., secondary organic and inorganic aerosol and tropospheric ozone) and the lifetimes of both primary and secondary emissions. For example, the concentration of atmospheric hydroxyl radical (OH) controls the lifetime and thus radiative impact of many greenhouse gases. However, the concentration is controlled by a complex suite of reactions that are still under debate in the literature. This special issue highlights current research into chemistry–climate interactions. One important theme addressed in this issue involves the role of surface–atmosphere exchange of chemical species. The biosphere, hydrosphere, and cryosphere all interact with the atmosphere as both sources and sinks of reactive trace gases, greenhouse gases, and particles. However, these interactions provide critical feedbacks: environmental conditions can impact the productivity and emissions by plants, while climatological effects can influence biodiversity and even ocean dynamics relevant to trace gas and sea spray emissions. The background conditions of the planet, that is, the concentration of species in the atmosphere before humans, are essential to quantify as they provide the boundary condition for understanding how human activities are influencing climate. However, as many of the papers in this special issue note, anthropogenic additions to the atmosphere influence surface–atmosphere exchange and atmospheric chemistry. Adding CO2 or increasing temperature influences biosphere sources of volatile organic compounds, while the addition of NO and NO2 radicals from fossil fuel and wildfire combustion sources influence oxidation radical chemistry and thus OH concentrations, ozone production rate, and secondary organic aerosol formation. Anthropogenic emissions also influence multiphase chemistry and acidity of aerosols and thus influence the ability of aerosols to take up water and act as cloud condensation nuclei. Our understanding of the sources, sinks, and chemistry of both short- and long-lived chemical species has improved dramatically over the past several decades. These improvements can largely be attributed to the development of new measurement technologies used in field and laboratory experiments, as well as innovative modeling studies. Atmospheric chemistry experiments are becoming progressively more interdisciplinary as the role of microbes and plants as key levers in atmospheric chemistry and climate are slowly being revealed. The “lab-in-field” approach of in situ chemical kinetics experiments using flow reactors has provided insight into reactive trace gas and aerosol chemistry, while studies that bring real-world samples into laboratory environments have demonstrated the complex controls on ocean–atmosphere exchange and aerosol formation. Despite these studies, gaps in our understanding of climate–chemistry interactions persist. These gaps limit our ability to understand human impacts on climate and predict how changes in policies will affect our future temperatures. Areas of particular need in the chemistry–climate field include feedbacks in biosphere–atmosphere exchange from increasing air pollutants and changing climate conditions, a deeper understanding of the chemistry of ocean surfaces and the interplay between marine biology and atmospheric chemistry, how the chemical evolution of aerosols in the atmosphere impacts their capacity to form clouds, and the intersection of policy and chemistry through studies of the influence of decision-making and social behavior on atmospheric composition and chemistry–climate interactions. Views expressed in this editorial are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.

中文翻译:

化学的气候视角:大气化学对地球辐射平衡的影响的新兴研究

客座社论化学研究帐户特刊“化学-气候相互作用的新前沿”。人类活动正在改变大气的组成,并因此改变地球的气候。了解这些变化的程度并准确预测我们的决定和行动将如何影响这些变化的幅度,需要详细了解大气中长期存在的气候原动力,包括温室气体,以及对流短暂的气候原动力,例如对流层臭氧和气溶胶。大气化学在气候中起着核心作用,它决定了许多次级气候推动力的来源(例如,次级有机和无机气溶胶以及对流层臭氧)以及初级和次级排放的寿命。例如,大气中的羟基自由基(OH)的浓度控制着生命周期,从而控制了许多温室气体的辐射影响。但是,集中度受一系列复杂的反应控制,这些反应仍在文献中讨论。本期特刊着重介绍了当前化学与气候相互作用的研究。该问题涉及的一个重要主题涉及化学物种的表面-大气交换。生物圈,水圈和冰冻圈都与大气相互作用,成为反应性痕量气体,温室气体和颗粒的源和汇。但是,这些相互作用提供了关键的反馈:环境条件可能会影响工厂的生产率和排放量,而气候影响会影响生物多样性,甚至影响与微量气体和海浪排放有关的海洋动力学。行星的背景条件,即人类之前大气中物种的浓度,对于量化至关重要,因为它们为了解人类活动如何影响气候提供了边界条件。但是,正如本期特刊中的许多论文一样,人为添加到大气中会影响地表-大气交换和大气化学。添加CO 大气的人为添加影响地表-大气交换和大气化学。添加CO 大气的人为添加影响地表-大气交换和大气化学。添加CO2或温度升高会影响生物圈中挥发性有机化合物的来源,同时添加NO和NO 2来自化石燃料和野火燃烧源的自由基会影响氧化自由基的化学反应,从而影响OH的浓度,臭氧的产生速率和二次有机气溶胶的形成。人为排放还影响气溶胶的多相化学性质和酸度,从而影响气溶胶吸收水并充当云凝结核的能力。在过去的几十年中,我们对短寿命和长寿命化学物种的来源,汇和化学的理解得到了极大的提高。这些改进很大程度上可以归因于在现场和实验室实验中使用的新测量技术的发展,以及创新的建模研究。随着微生物和植物在大气化学和气候中的关键杠杆作用逐渐被揭示,大气化学实验正变得越来越跨学科。的“现场实验”方法原位使用流动反应器的化学动力学实验提供了对反应性痕量气体和气溶胶化学的深入了解,而将真实世界的样品带入实验室环境的研究则表明了对海洋-大气交换和气溶胶形成的复杂控制。尽管进行了这些研究,但我们对气候-化学相互作用的理解仍存在差距。这些差距限制了我们了解人类对气候的影响并预测政策变化将如何影响我们未来温度的能力。化学-气候领域中特别需要的领域包括来自不断增加的空气污染物和不断变化的气候条件的生物圈-大气交换反馈,对海洋表面化学的更深刻理解以及海洋生物学与大气化学之间的相互作用,通过研究决策和社会行为对大气成分和化学-气候相互作用的影响,大气中气溶胶的化学演化如何影响其形成云的能力以及政策与化学的交叉点。本社论中表达的观点只是作者的观点,不一定是ACS的观点。本文尚未被其他出版物引用。
更新日期:2020-11-17
down
wechat
bug