当前位置: X-MOL 学术Isr. J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
NanoBioMaterials: Advanced Research Outlines New Horizons for Basic and Applied Science
Israel Journal of Chemistry ( IF 2.3 ) Pub Date : 2020-11-17 , DOI: 10.1002/ijch.202000089
Irit Sagi , Avi Schroeder

Nanobiomaterials are nanostructured materials implemented in a wide range of biomedical applications, including nanostructured ceramics, polymers, lipids, metals, composites, nucleic acids, self‐assembled materials, and macromolecules. Emerging technologies outline novel experimental tools for characterizing nanostructured biomaterials' behavior in cells and the whole organism for numerous applications, including drug delivery, medical diagnostics, surgery, and tissue engineering. Thus, NanoBioMaterials represent a new class of materials designed to interact intrinsically with biological substances to achieve a precise biological outcome. This Special Issue of the IJC presents various approaches of outstanding young researchers from Israel's universities to develop and study novel materials and their implications for biology. The biological targets of these materials vary, including imaging of the brain and treatment of cancerous tumors and modulating plants' physical properties. The manuscripts describe new manipulations of molecules and matter by employing innovative chemical approaches, such as microfluidics' and nanotechnology. Combined, integrating these material‐biology interfaces allows the improved discovery of new biological targets and new drugs.

The ability to form targeted nanoscale medicines and test them in organ‐on‐chip scenarios promises improved therapeutic accuracy, reduced use of animals, and rapid clinical implementation. To achieve these goals, the integration of chemical, biological, and computational capabilities are required. These studies require research groups that are interdisciplinary by their nature.

The value of work at the interface of nanotechnology, materials, and biology is immense, generating fundamental understandings regarding how our body responds to engineered materials. Next‐generation materials are designed to become biomimetic for better tissue integration. Furthermore, experimental trial and error processes are shortened by taking a lesson from Nature, adapting natural principles, and leveraging them to develop new therapeutic and diagnostic materials. The list of new materials includes bioadhesives that adhere to wet environments with minimal toxicity, and materials that degrade to safe biproducts which, in turn, are secreted or metabolized by the body. Engineering also allows these systems to respond to internal or external cues that trigger drug release with spatio‐temporal accuracy. Precision at the nanoscale allows to reduce side effects and focus the therapeutic activity to the site that most renders treatment.

In summary, the use of nanobiomaterials is becoming more common in modern life. Nanobiomaterials exhibit distinctive biophysical characteristics, including mechanical, electrical, and optical properties, making them suitable for various in vitro and in vivo biological applications. This special issue of the IJC provides insight into cutting‐edge research conducted in Young and Emerging Scientific Stars laboratories in Israel's universities. These young researchers hold great promise to make a transformative leap in the field of NanoBioMaterials.

image



中文翻译:

纳米生物材料:高级研究概述了基础科学和应用科学的新视野

纳米生物材料是在多种生物医学应用中实现的纳米结构材料,包括纳米结构陶瓷,聚合物,脂质,金属,复合材料,核酸,自组装材料和大分子。新兴技术概述了新颖的实验工具,用于表征纳米结构生物材料在细胞和整个生物体中的行为,可用于多种应用,包括药物输送,医学诊断,手术和组织工程。因此,纳米生物材料代表了一类新型材料,旨在与生物物质发生内在相互作用以实现精确的生物学结果。IJC的这期特刊介绍了以色列大学杰出青年研究人员开发和研究新颖材料及其对生物学的意义的各种方法。这些材料的生物学目标各不相同,包括大脑成像和癌性肿瘤的治疗以及调节植物的物理特性。这些手稿描述了通过采用创新的化学方法(例如微流体技术和纳米技术)对分子和物质进行的新操作。这些材料-生物学接口的结合,整合,可以改善对新生物靶标和新药物的发现。

能够形成有针对性的纳米级药物并在片上器官场景中对其进行测试的能力有望提高治疗的准确性,减少动物的使用并实现快速的临床实施。为了实现这些目标,需要整合化学,生物学和计算能力。这些研究需要根据其性质跨学科的研究小组。

在纳米技术,材料和生物学的界面上,工作的价值是巨大的,这使人们对我们的身体对工程材料的反应有了基本的了解。下一代材料旨在成为仿生材料,以实现更好的组织整合。此外,通过从自然界汲取教训,改编自然原理并利用它们来开发新的治疗和诊断材料,可以缩短实验性尝试和错误过程。新材料的清单包括粘附在潮湿环境中且毒性最小的生物粘合剂,以及降解为安全副产物的物质,而副产物又会被人体分泌或代谢。工程学还允许这些系统以时空精度响应触发药物释放的内部或外部线索。

总之,在现代生活中,纳米生物材料的使用正变得越来越普遍。纳米生物材料表现出独特的生物物理特性,包括机械,电气和光学特性,使其适合各种体外体内生物应用。IJC的这一期特刊提供了在以色列大学的年轻和新兴科学之星实验室进行的前沿研究的真知灼见。这些年轻的研究人员具有巨大的希望,有望在纳米生物材料领域实现变革性的飞跃。

图片

更新日期:2020-12-14
down
wechat
bug