当前位置: X-MOL 学术Biotechnol. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development and application of a cultivation platform for mammalian suspension cell lines with single‐cell resolution
Biotechnology and Bioengineering ( IF 3.5 ) Pub Date : 2020-11-17 , DOI: 10.1002/bit.27627
Julian Schmitz 1 , Sarah Täuber 1 , Christoph Westerwalbesloh 2 , Eric von Lieres 2 , Thomas Noll 3 , Alexander Grünberger 1
Affiliation  

In bioproduction processes, cellular heterogeneity can cause unpredictable process outcomes or even provoke process failure. Still, cellular heterogeneity is not examined systematically in bioprocess research and development. One reason for this shortcoming is the applied average bulk analyses, which are not able to detect cell‐to‐cell differences. In this study, we present a microfluidic tool for mammalian single‐cell cultivation (MaSC) of suspension cells. The design of our platform allows cultivation in highly controllable environments. As a model system, Chinese hamster ovary cells (CHO‐K1) were cultivated over 150 h. Growth behavior was analyzed on a single‐cell level and resulted in growth rates between 0.85 and 1.16 day−1. At the same time, heterogeneous growth and division behavior, for example, unequal division time, as well as rare cellular events like polynucleation or reversed mitosis were observed, which would have remained undetected in a standard population analysis based on average measurements. Therefore, MaSC will open the door for systematic single‐cell analysis of mammalian suspension cells. Possible fields of application represent basic research topics like cell‐to‐cell heterogeneity, clonal stability, pharmaceutical drug screening, and stem cell research, as well as bioprocess related topics such as media development and novel scale‐down approaches.
更新日期:2021-01-25
down
wechat
bug