当前位置: X-MOL 学术J. Plant Growth. Regul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Melatonin Enhances the Waterlogging Tolerance of Prunus persica by Modulating Antioxidant Metabolism and Anaerobic Respiration
Journal of Plant Growth Regulation ( IF 3.9 ) Pub Date : 2020-11-17 , DOI: 10.1007/s00344-020-10263-5
Xianbin Gu , Lian Xue , Linghong Lu , Jinping Xiao , Genhua Song , Ming Xie , Huiqin Zhang

Prunus persica is considered one of the most hypoxia-intolerant stone fruits. However, waterlogging, which causes hypoxia, occurs frequently in southern China where peaches are commercially important. As useful waterlogging-tolerant rootstock for peaches is limited, effective emergency strategies are urgent to identify solutions for this problem. In this study, we assessed the effect of exogenous melatonin application at different concentrations on the physiological, metabolic, and molecular properties of peach seedlings during waterlogging. The results revealed that melatonin markedly enhanced the waterlogging tolerance of peach seedlings, especially using a 200-μM solution of melatonin, as evidenced by the tolerant phenotype including new leaves and root activity, as well as by the higher levels of relative chlorophyll content and stomatal aperture, compared with waterlogging-stressed plants. In addition, higher levels of superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POD, EC 1.11.1.7) activity and lower levels of lipid peroxidation, hydrogen peroxide (H2O2), as well as ethylene content in melatonin-treated plants suggest that melatonin acts as an antioxidant in the context of waterlogging stress. Anaerobic respiration was controlled by melatonin through the enhanced aerenchyma and the suppressed regulation of metabolic enzymes (ADH: EC 1.1.1.1, PDC: EC 4.1.1.1, and LDH: EC 1.1.1.27) and the enzymatic and/or transcript level. Moreover, the expression levels of Ca2+ signalling and hypoxia-related ERF VII transcription factor genes were elevated by melatonin against waterlogging stress. Taken together, these results highlight that melatonin was an effective molecule for enhancement of hypoxia tolerance, particularly in peach plants, through the regulation of antioxidant enzymes and anaerobic respiration.
更新日期:2020-11-17
down
wechat
bug