当前位置: X-MOL 学术J. Mater. Eng. Perform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cracking of Copper Brazed Steel Joints Due to Precipitation of MnS upon Cooling
Journal of Materials Engineering and Performance ( IF 2.2 ) Pub Date : 2020-11-17 , DOI: 10.1007/s11665-020-05293-9
Dheeraj Varanasi , Daniel Koncz-Horvath , Anna Sycheva , Peter Baumli , George Kaptay

The process of brazing of different steel grades by pure liquid copper foil was studied to reveal the critical conditions when cracks do or do not appear in the braze upon cooling without any external load. Steel grades C45 (S 0.030 wt.%, no Mn and no Cr), S103 (Mn 0.25 wt.% and S 0.020 wt.% with no Cr), CK60 (0.75 wt.% Mn, 0.07 wt.% S and 0.15 wt.% Cr) and EN 1.4034 (Cr 12 wt.%, Mn 1.0 wt.% and S 0.035 wt.%) are studied under identical conditions using copper foils of 70-microns-thick. The samples were held above the melting point of copper at 1100 °C under high vacuum for different time durations (between 180 and 3600 s) and then cooled spontaneously. The joints were found cracked during cooling after a certain critical holding time. This critical holding time for cracking was found to decrease with increasing the Mn content and the S content of steel. It is observed that cracking is due to the precipitation of a critical amount of MnS phase upon cooling. The MnS/Cu interface is the weakest interface in the joint (with adhesion ensured only by van-der-Waals bonds), which is broken/separated upon cooling due to difference in heat expansion coefficients of the sulfide and copper phases. Higher is the Mn and S content, shorter is the probable time required for crack to appear in the joint. The braze integrity diagram is constructed as function of solubility product of MnS in steel and holding time showing a stable crack-free technological region and an unstable technological region with high probability of crack formation.



中文翻译:

冷却时由于MnS析出而使铜焊钢接头开裂

研究了用纯液态铜箔钎焊不同钢种的过程,以揭示在没有任何外部载荷的情况下,冷却后钎焊中裂纹是否出现或不出现裂纹的临界条件。钢号C45(S 0.030 wt。%,无Mn和Cr),S103(Mn 0.25 wt。%和S 0.020 wt。%,无Cr),CK60(0.75 wt。%Mn,0.07 wt。%S和0.15使用70微米厚的铜箔,在相同的条件下研究了重量百分比为5%的Cr)和EN 1.4034(Cr为12 wt。%,Mn为1.0 wt。%和S为0.035 wt。%)。将样品在高真空下于1100°C的铜熔点以上保持不同的持续时间(180至3600 s),然后自发冷却。在一定的保持时间后,冷却过程中发现接头破裂。发现裂纹的临界保持时间随着钢中Mn含量和S含量的增加而减少。观察到破裂是由于冷却时临界量的MnS相的沉淀所致。MnS / Cu界面是接头中最弱的界面(仅通过范德华耳键才能确保粘合),由于硫化物和铜相的热膨胀系数不同,冷却后会断裂/分离。Mn和S含量越高,接合处出现裂纹所需的时间越短。钎焊完整性图是由MnS在钢中的溶解度积和保持时间所决定的,显示出稳定的无裂纹工艺区域和不稳定的工艺区域,且裂纹形成的可能性很高。观察到破裂是由于冷却时临界量的MnS相的沉淀所致。MnS / Cu界面是接头中最弱的界面(仅通过范德华耳键才能确保粘合),由于硫化物和铜相的热膨胀系数不同,冷却后会断裂/分离。Mn和S含量越高,接合处出现裂纹所需的时间越短。钎焊完整性图是由MnS在钢中的溶解度积和保持时间所决定的,显示出稳定的无裂纹工艺区域和不稳定的工艺区域,且裂纹形成的可能性很高。观察到破裂是由于冷却时临界量的MnS相的沉淀所致。MnS / Cu界面是接头中最弱的界面(仅通过范德华耳键才能确保粘合),由于硫化物和铜相的热膨胀系数不同,冷却后会断裂/分离。Mn和S含量越高,接合处出现裂纹所需的时间越短。钎焊完整性图是由MnS在钢中的溶解度积和保持时间所决定的,显示出稳定的无裂纹工艺区域和不稳定的工艺区域,且裂纹形成的可能性很高。由于硫化物和铜相的热膨胀系数不同,冷却时会破裂/分离。Mn和S含量越高,接合处出现裂纹所需的时间越短。钎焊完整性图是由MnS在钢中的溶解度积和保持时间所决定的,显示出稳定的无裂纹工艺区域和不稳定的工艺区域,且裂纹形成的可能性很高。由于硫化物和铜相的热膨胀系数不同,冷却时会破裂/分离。Mn和S含量越高,接合处出现裂纹所需的时间越短。钎焊完整性图是由MnS在钢中的溶解度积和保持时间所决定的,显示出稳定的无裂纹工艺区域和不稳定的工艺区域,且裂纹形成的可能性很高。

更新日期:2020-11-17
down
wechat
bug