当前位置: X-MOL 学术J. Cent. South Univ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distribution patterns of rock mass displacement in deeply buried areas induced by active fault creep slip at engineering scale
Journal of Central South University ( IF 3.7 ) Pub Date : 2020-11-17 , DOI: 10.1007/s11771-020-4514-8
Chuan-qing Zhang , Xiao-yan Liu , Guo-jin Zhu , Hui Zhou , Yong Zhu , Chao Wang

Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it. Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects. Therefore, a discrete element numerical model with different fault types, slip time, dip angles, and complex geological features was established, and then the creep slip for normal, reverse, and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass. A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults. A series of rotation tests for soft-and hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution. An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse, normal, and strike-slip faults. The results indicated that the higher the degree of horizontal extrusion, the softer the rock mass at the fault core, and the higher the degree of displacement concentration in the fault core; about 70% of the creep slip displacement occurs within this zone under 100 years of creep slippage.



中文翻译:

工程尺度下主动断层蠕滑引起深埋区岩体位移分布规律

主动断层蠕动滑移会引起深埋在断层带中的岩体变形,从而极大地影响经过它的长线性项目的运行安全性。先前已经研究过的活动断层带中岩体的位移分布模式是此类项目的关键设计基础。因此,建立了具有不同断层类型,滑动时间,倾角和复杂地质特征的离散元数值模型,然后对正断层,反向断层和走滑断层的蠕滑进行了模拟,以分析断层中的位移分布。岩体。开发了盘旋转试验系统和相应的实验室试验方法,以模拟断层蠕滑引起的岩体位移。对软层和硬层试件在压缩和扭转应力作用下进行了一系列旋转试验,以验证数值结果并分析影响位移分布的因素。确定了与断层倾角无关的S形位移分布,分别对应于逆向,正向和走滑断层。结果表明,水平挤压程度越高,断层岩心处的岩体越软,断层岩心中的位移集中度越高;在100年的蠕变滑移下,大约70%的蠕变滑移发生在该区域内。确定了与断层倾角无关的S形位移分布,分别对应于逆向,正向和走滑断层。结果表明,水平挤压程度越高,断层岩心处的岩体越软,断层岩心中的位移集中度越高;在100年的蠕变滑移下,大约70%的蠕变滑移发生在该区域内。确定了与断层倾角无关的S形位移分布,分别对应于逆向,正向和走滑断层。结果表明,水平挤压程度越高,断层岩心处的岩体越软,断层岩心中的位移集中度越高;在100年的蠕变滑移下,大约70%的蠕变滑移发生在该区域内。

更新日期:2020-11-17
down
wechat
bug